基于多视角的民机正向设计建模方法
收稿日期: 2022-05-27
修回日期: 2022-07-04
录用日期: 2022-08-17
网络出版日期: 2022-08-31
基金资助
国家自然科学基金(61903305);工信部民用飞机专项科研(MJ-2016-F-02);中央高校基本科研业务费专项资金(HXGJXM202214)
Modeling approach for forward design of civil aircraft based on multiple perspectives
Received date: 2022-05-27
Revised date: 2022-07-04
Accepted date: 2022-08-17
Online published: 2022-08-31
Supported by
National Natural Science Foundation of China(61903305);Special Scientific Research Project for Civil Aircraft of the Ministry of Industry and Information Technology(MJ-2016-F-02);Fundamental Research Funds for the Central Universities(HXGJXM202214)
针对民机正向设计中存在的建模对象复杂耦合程度高、建模理论支撑不足、利益相关方需求缺乏模型描述等问题,提出了基于多视角的民机正向设计建模方法。首先,通过分析民机正向设计流程和基于模型的系统工程(MBSE)方法论,明确民机正向设计自顶向下的映射和关联关系;然后,引入多视角对民机设计流程进行多方位解耦与描述,分析各视角下的建模元素及其逻辑关系,将设计领域知识流与各视角下建模流程相结合,通过建模语言SysML对多个视角下的民机正向设计模型进行抽象建模描述;最后,通过舱压控制系统建模实例验证了本方法能够有效契合民用飞机系统的设计。
关键词: 基于模型的系统工程(MBSE); 多视角; 正向设计; 民用飞机; 舱压控制系统
毕文豪 , 范秋岑 , 李德林 , 张安 . 基于多视角的民机正向设计建模方法[J]. 航空学报, 2023 , 44(10) : 227536 -227536 . DOI: 10.7527/S1000-6893.2022.27536
To address the problems of increasing complexity in coupling of modeling objects, insufficient modeling theory support, and lack of model description of stakeholder requirements in the system-of-systems oriented design of civil aircraft systems, we propose a multi-perspective-based modeling approach for civil aircraft forward design. First, the top-down mapping and correlation of civil aircraft forward design are clarified by analyzing the civil aircraft forward design process and Model-Based Systems Engineering (MBSE) methodology. Then, we introduce multiple perspectives to decouple and describe the civil aircraft design process, analyze the modeling elements and their logical relationships from each perspective, combine the design domain knowledge flow with the modeling process from each perspective, and describe abstractly the civil aircraft design model from multiple perspectives through the modeling language SysML. Finally, a modeling example of the cabin pressure control system is utilized to verify the effectiveness of this method for the design of civil aircraft systems.
1 | 陈泳, 田彬, 刘泽林, 等. 民机研制系统工程若干基本概念的哲学思考[J]. 民用飞机设计与研究, 2017(3): 35-41. |
CHEN Y, TIAN B, LIU Z L, et al. The basic concepts of the systems engineering approaches for civil aircraft development[J]. Civil Aircraft Design & Research, 2017(3): 35-41 (in Chinese). | |
2 | 郭博智, 李浩敏. 大型客机设计中的需求管理[J]. 民用飞机设计与研究, 2013(4): 1-5. |
GUO B Z, LI H M. The application of requirements management in civil aircraft development[J]. Civil Aircraft Design & Research, 2013(4): 1-5 (in Chinese). | |
3 | 胡晓义, 王如平, 王鑫, 等. 基于模型的复杂系统安全性和可靠性分析技术发展综述[J]. 航空学报, 2020, 41(6): 523436. |
HU X Y, WANG R P, WANG X, et al. Recent development of safety and reliability analysis technology for model-based complex system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523436 (in Chinese). | |
4 | 马小骏, 彭焕春. 系统工程在大型客机运行支持系统研制中的应用综述[J]. 航空学报, 2019, 40(1): 522376. |
MA X J, PENG H C. Review on development of commercial aircraft operation support system based on system engineering approach[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522376 (in Chinese). | |
5 | MONTGOMERY P R. Model-based system integration (MBSI)—Key attributes of MBSE from the system integrator’s perspective[J]. Procedia Computer Science, 2013, 16: 313-322. |
6 | BJORKMAN E A, SARKANI S, MAZZUCHI T A. Using model-based systems engineering as a framework for improving test and evaluation activities[J]. Systems Engineering, 2013, 16(3): 346-362. |
7 | GREGORY J, BERTHOUD L, TRYFONAS T, et al. The long and winding road: MBSE adoption for functional avionics of spacecraft[J]. Journal of Systems and Software, 2020, 160: 110453. |
8 | 蒲毅, 周鹏程, 孙鹏, 等. 民用飞机机载系统正向研制体系创新研究[C]∥中国企业改革发展优秀成果2019(第三届)下卷. 北京: 中国商务出版社, 2019: 447-470. |
PU Y, ZHOU P C, SUN P, et al. Innovation Research on Forward Development System of Civil Aircraft Airborne System[C]∥3th The Collection For Achievements Of China Enterprise Reform and Development. Beijing: China Commerce and Trade Press, 2019: 447-470 (in Chinese). | |
9 | FRIEDENTHAL S, GRIEGO R, TRYFONAS T, et al. INCOSE model based systems engineering (MBSE) initiative[EB/OL]. (2015-01-29) [2023-02-21]. . |
10 | WU G H. A trio of commercial aircraft developments in China[J]. Engineering, 2021, 7(4): 424-426. |
11 | GOUGH K M, PHOJANAMONGKOLKIJ N. Employing model-based systems engineering (MBSE) on a NASA aeronautic research project: A case study[C]∥ 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 3361. |
12 | 王文浩, 毕文豪, 张安, 等. 基于MBSE的民机系统功能建模方法[J]. 系统工程与电子技术, 2021, 43(10): 2884-2892. |
WANG W H, BI W H, ZHANG A, et al. Function modeling method of civil aircraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43(10): 2884-2892 (in Chinese). | |
13 | MALONE R, FRIEDLAND B, HERROLD J, et al. Insights from large scale model based systems engineering at boeing[J]. INCOSE International Symposium, 2016, 26(1): 542-555. |
14 | 程磊. 基于模型的系统工程与虚拟铁鸟解决方案[J]. 航空制造技术, 2013, 56(3): 100-102. |
CHENG L. Model based system engineering and virtual iron bird solution[J]. Aeronautical Manufacturing Technology, 2013, 56(3): 100-102 (in Chinese). | |
15 | 张柏楠, 戚发轫, 邢涛, 等. 基于模型的载人航天器研制方法研究与实践[J]. 航空学报, 2020, 41(7): 023967. |
ZHANG B N, QI F R, XING T, et al. Model based development method of manned spacecraft: research and practice[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 023967 (in Chinese). | |
16 | 焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43(9): 2516-2525. |
JIAO H C, LEI Y, ZHANG H Y, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43(9): 2516-2525 (in Chinese). | |
17 | 袁文强, 王保民, 陈波, 等. MBSE使能动车组高压系统领域智能高效生成方案[J]. 计算机辅助设计与图形学学报, 2020, 32(6): 979-988. |
YUAN W Q, WANG B M, CHEN B, et al. Intelligent and efficient solution generation enabled by MBSE in high voltage system domain of EMU[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(6): 979-988 (in Chinese). | |
18 | 张世聪, 陈波, 张晓晋, 等. 基于MBSE的动车组设计方法研究及应用[J]. 中国铁道科学, 2018, 39(2): 94-102. |
ZHANG S C, CHEN B, ZHANG X J, et al. Research and application of design method of electric multiple unit based on MBSE[J]. China Railway Science, 2018, 39(2): 94-102 (in Chinese). | |
19 | 陈娟, 周广明, 李欣桐, 等. 基于MBSE的综合传动装置需求分析[J]. 兵工学报, 2022, 43(S1): 11-20. |
CHEN J, ZHOU G M, LI X T, et al. MBSE-based requirement analysis of transmission system[J]. Acta Armamentarii, 2022, 43(Sup 1): 11-20 (in Chinese). | |
20 | GRIEVES M, VICKERS J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[M]∥KAHLEN J, FLUMERFELT S, ALVES A. Transdisciplinary Perspectives on Complex Systems. Cham: Springer, 2017: 85-113. |
21 | MILLER A M, ALVAREZ R, HARTMAN N. Towards an extended model-based definition for the digital twin[J]. Computer-Aided Design and Applications, 2018, 15(6): 880-891. |
22 | ESTEFAN J. Of model-based systems engineering (MBSE) methodologies[R]. San Diego: International Council on Systems Engineering, 2008. |
23 | 汉斯-彼得·霍夫曼, 谷炼. 基于模型的系统工程最佳实践[M]. 北京: 航空工业出版社, 2014. |
HOFFMANN H, GU L. Model-based systems engineering best practices[M]. Beijing: Aviation Industry Press, 2014 (in Chinese). | |
24 | ROQUES P. MBSE with the ARCADIA method and the Capella tool[EB/OL]. (2016-03-21)[2023-02-21]. . |
25 | ALEKSANDRAVICIENE A, MORKEVICIUS A. MagicGrid book of knowledge[M]. Kaunas: Vitae Litera, 2018. |
26 | MAZEIKA D, MORKEVICIUS A, ALEKSANDRAVI? CIENE A. MBSE driven approach for defining problem domain[C]∥2016 11th System of Systems Engineering Conference (SoSE). Piscataway: IEEE Press, 2016: 1-6. |
27 | FRIEDENTHAL S A, MOORE A, STEINER R. OMG systems modeling language (OMG SysML?) tutorial[C]∥INCOSE 2009 SINGAPORE. San Diego: International Council on Systems Engineering, 2009, 19(1): 1840-1972. |
28 | 孙霄剑, 罗明强, 张驰, 等. 民用飞机预研论证权威真相源构建技术[J]. 航空学报, 2021, 42(2): 224222. |
SUN X J, LUO M Q, ZHANG C, et al. Construction technology of authoritative source of truth for civil aircraft pre-research[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224222 (in Chinese). | |
29 | ROQUES P. Systems architecture modeling with the Arcadia method: A practical guide to Capella[M]. London: ISTE Press Ltd., 2018. |
30 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. CCAR-25-R4: Airworthiness standards: Transport category airplanes [S]. Beijing: Civil Aviation Authority of China, 2011 (in Chinese). | |
31 | Society of Automotive Engineers. Guidelines for development of civil aircraft and systems: SAE ARP4754A [S]. Warrendale: Society of Automotive Engineers, 2010. |
32 | International Organization for Standardization. Systems and software engineering - System life cycle processes: [S]. Switzerland: International Organization for Standardization, 2015. |
33 | 刘泽林, 钱仲焱, 陈泳. 基于概念图的民机概念设计要求识别与获取[J]. 计算机集成制造系统, 2015, 21(10): 2549-2557. |
LIU Z L, QIAN Z Y, CHEN Y. Identification and acquisition for conceptual design requirements of civil aircraft based on conceptual graphs[J]. Computer Integrated Manufacturing Systems, 2015, 21(10): 2549-2557 (in Chinese). | |
34 | DoD Architecture Framework Working Group. DoDAF architecture framework version 2.02[R]. Washington D. C.: USA Department of Defense, 2015. |
35 | HAUSE M, BLEAKLEY G, MORKEVICIUS A. Technology update on the unified architecture framework (UAF)[J]. INCOSE International Symposium, 2016, 26(1): 1145-1160. |
36 | 刘婧婷, 郭继坤, 邵芳. 基于统一体系结构框架的战区联合作战后勤与装备保障指挥信息系统架构[J]. 兵工学报, 2021, 42(2): 408-421. |
LIU J T, GUO J K, SHAO F. Architecture of theater logistics and equipment support command information system based on UAF[J]. Acta Armamentarii, 2021, 42(2): 408-421 (in Chinese). | |
37 | ZHENG H X, LIU X, WU J H, et al. The on-orbit mission analysis of OTV based on DoDAF[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(6): 937-945. |
38 | Object Management Group. Unified architecture framework profile (UAFP): Version 1.0 [S]. Milford: Object Management Group, 2017. |
39 | Object Management Group. Unified architecture framework (UAF) traceability between framework views and elements: version 1.0 [S]. Milford: Object Management Group, 2017. |
40 | 范秋岑, 毕文豪, 张安, 等. 民用飞机高度控制系统MBSE建模方法[J]. 系统工程与电子技术, 2022, 44(1): 164-171. |
FAN Q C, BI W H, ZHANG A, et al. MBSE modeling method of civil aircraft altitude control system[J]. Systems Engineering and Electronics, 2022, 44(1): 164-171 (in Chinese). | |
41 | 刘森, 杨德真, 冯强, 等. 基于DoDAF的飞行试验体系需求建模方法[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2021.0584 . |
LIU S, YANG D Z, FENG Q, et al. Modeling method of flight test requirements based on DoDAF[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2021.0584 . | |
42 | CUI Z Y, LUO M Q, ZHANG C, et al. MBSE for civil aircraft scaled demonstrator requirement analysis and architecting[J]. IEEE Access, 2022, 10: 43112-43128. |
43 | 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 20-26. |
SHOU R Z, HE H S. Spacecraft optimal control theory and method[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2004: 20-26 (in Chinese). | |
44 | 汤剑, 张兴娟, 袁修干, 等. 新型座舱压力调节器动态特性研究[J]. 飞机工程, 2005(4): 45-49. |
TANG J, ZHANG X J, YUAN X G, et al. Research on dynamic performance of new cabin’s pressure regulator[J]. Aircraft Engineering, 2005(4): 45-49 (in Chinese). | |
45 | 聂进方, 潘泉, 石国刚. 数字气动式座舱压力控制系统性能[J]. 南京理工大学学报, 2014, 38(1): 83-88. |
NIE J F, PAN Q, SHI G G. Performance of digital electro-pneumatic cabin pressure control system[J]. Journal of Nanjing University of Science and Technology, 2014, 38(1): 83-88 (in Chinese). |
/
〈 |
|
〉 |