固体力学与飞行器总体设计

MIMO窄带加宽带非高斯随机振动试验

  • 马益 ,
  • 贺旭东 ,
  • 陈怀海 ,
  • 郑荣慧
展开
  • 南京航空航天大学 航空航天结构力学及控制全国重点实验室,南京 210016
.E-mail: chhnuaa@nuaa.edu.cn

收稿日期: 2022-05-20

  修回日期: 2022-07-14

  录用日期: 2022-08-15

  网络出版日期: 2022-08-31

基金资助

国家自然科学基金(12202187);中国博士后面上基金(2022M721610);江苏省卓越博士后计划(2022ZB210)

Non-Gaussian random vibration testing of MIMO narrowband on broadband

  • Yi MA ,
  • Xudong HE ,
  • Huaihai CHEN ,
  • Ronghui ZHENG
Expand
  • State Key Laboratory of Mechanics and Control for Aerospace Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2022-05-20

  Revised date: 2022-07-14

  Accepted date: 2022-08-15

  Online published: 2022-08-31

Supported by

National Natural Science Foundation of China(12202187);China Postdoctoral Science Foundation(2022M721610);Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB210)

摘要

提出了一种用于多输入多输出窄带加宽带非高斯随机振动试验方法。首先,详细分析了随机相位与非高斯随机信号偏度和峭度的关系,提出了一种可用于快速生成具有指定偏度和峭度的迭代相位调节法。其次,根据控制通道之间的耦合关系,利用各通道之间随机相位的不相关特性,实现了多通道非高斯随机信号生成的解耦。然后,将生成的非高斯随机信号作为参考输出响应,采用时域逆系统方法生成驱动信号,并利用控制算法分别对响应信号的功率谱、偏度和峭度进行控制。最后,通过三轴向振动台试验验证了本文提出的多输入多输出窄带加宽带非高斯随机振动试验方法的可行性。结果表明,控制点上加速度的功率谱被控制在了±3 dB的容差限内,满足预设的容差要求。同时,时域响应信号的峭度和偏度也满足给定的参考要求。

本文引用格式

马益 , 贺旭东 , 陈怀海 , 郑荣慧 . MIMO窄带加宽带非高斯随机振动试验[J]. 航空学报, 2023 , 44(8) : 227475 -227475 . DOI: 10.7527/S1000-6893.2022.27475

Abstract

Non-Gaussian random vibration control testing of multi-input multi-output narrowband on broadband is proposed. Firstly, the relationship among the random phase, skewness and kurtosis of non-Gaussian random signals is analyzed, and an iteration phase adjustment method is proposed for rapid generation of non-Gaussian random signals with specified skewness and kurtosis. Secondly, the non-Gaussian random signals of multi-channels are decoupled and generated by the uncorrelation characteristic of the random phase among different channels. Taking the generated non-Gaussian random signals as the output responses, we then obtain the driving signals by the time domain inverse system method for vibration testing. The control algorithms are used to correct the PSDs, skewness and kurtosis of the response signals. Finally, the feasibility of the proposed method is verified by tri-axial shaker testing. The results show that the PSDs at the control channels can be controlled within the specified references. Meanwhile, the skewness and kurtosis of response signals in the time domain also meet the given references.

参考文献

1 马益, 秦远田, 付国庆. 力限半经验系数研究[J]. 国外电子测量技术201736(9): 86-90.
  MA Y, QIN Y T, FU G Q. Research of force-limited vibration for semi-empirical coefficient[J]. Foreign Electronic Measurement Technology201736(9): 86-90 (in Chinese).
2 MUSELLA U, D’ELIA G, CARRELLA A, et al. A minimum drives automatic target definition procedure for multi-axis random control testing[J]. Mechanical Systems and Signal Processing2018107: 452-468.
3 XIE Y M, SHI H, BI F X, et al. A MIMO data driven control to suppress structural vibrations[J]. Aerospace Science and Technology201877: 429-438.
4 MAJI A, MOREU F, WOODALL J, et al. Error analyses of a Multi-Input-Multi-Output cantilever beam test[J]. Journal of Vibration and Control202228(21-22): 3426-3437.
5 ZHENG R H, CHEN H H, VANDEPITTE D, et al. Generation of sine on random vibrations for multi-axial fatigue tests[J]. Mechanical Systems and Signal Processing2019126: 649-661.
6 D’ELIA G, MUSELLA U, MUCCHI E, et al. Analyses of drives power reduction techniques for multi-axis random vibration control tests[J]. Mechanical Systems and Signal Processing2020135: 106395.
7 郑威, 陈怀海. MIMO随机振动试验控制的逆多步预测模型法[J]. 航空学报202041(2): 223000.
  ZHENG W, CHEN H H. Inverse multi-step prediction model method for MIMO random vibration test control[J]. Acta Aeronautica et Astronautica Sinica202041(2): 223000 (in Chinese).
8 MA Y, CHEN H H, ZHENG R H. Control strategy for multi-axial swept sine on random mixed vibration testing[J]. Journal of Sound and Vibration2022527: 116846.
9 中国人民解放军总装备部. 军用装备实验室环境试验方法.第16部分: 振动试验: [S]. 北京: 中国人民解放军总装备部军标出版发行部,2009.
  The General Armaments Department of the People’s Liberation Army. Laboratory environmental test methods for military material.Part 16: Vibration test: [S]. Beijing: The Chinese People’s Liberation Army General Armaments Department Military Standard Publication Distribution Department Press, 2009 (in Chinese).
10 Department of Defense Test Method Standard. Environmental engineering considerations and laboratory tests: MIL-S [S].Washington,D.C.:US Department of Defense,2019.
11 张步云. 多输入多输出扫频及混合型振动试验控制系统研究[D]. 南京: 南京航空航天大学, 2014: 59-81.
  ZHANG B Y. Research on multi-input multi-output sweep frequency and hybrid vibration test control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 59-81 (in Chinese) .
12 孟韩, 黄海, 黄舟. 多自由度非高斯随机振动控制[J]. 航空学报201738(2): 220465.
  MENG H, HUANG H, HUANG Z. Multi-degree-of-freedom non-Gaussian random vibration control[J]. Acta Aeronautica et Astronautica Sinica201738(2): 220465 (in Chinese).
13 郑荣慧, 陈怀海, 贺旭东, 等. 一种多输入多输出非高斯随机振动试验方法[J]. 振动工程学报201730(5): 697-702.
  ZHENG R H, CHEN H H, HE X D, et al. A method for MIMO non-Gaussian random vibration test[J]. Journal of Vibration Engineering201730(5): 697-702 (in Chinese).
14 SHENG X Q, FAN W L, YANG X Y, et al. Auxiliary harmonic excitation generalized method for random vibration analysis of linear structures under non-stationary Gaussian excitation[J]. Mechanical Systems and Signal Processing2022172: 108958.
15 SMALLWOOD D O. Generating non-Gaussian vibration for testing purposes[J]. Sound and Vibration200539(10): 18-24.
16 ZHENG R H, CHEN H H, VANDEPITTE D, et al. Multi-exciter stationary non-Gaussian random vibration test with time domain randomization[J]. Mechanical Systems and Signal Processing2019122: 103-116.
17 STEINWOLF A. Approximation and simulation of probability distributions with a variable kurtosis value[J]. Computational Statistics & Data Analysis199621(2): 163-180.
18 STEINWOLF A. Random vibration testing with kurtosis control by IFFT phase manipulation[J]. Mechanical Systems and Signal Processing201228: 561-573.
19 陈家焱, 陈章位, 周建川, 等. 基于泊松过程的超高斯随机振动试验控制技术研究[J]. 振动与冲击201231(6): 19-22, 41.
  CHEN J Y, CHEN Z W, ZHOU J C, et al. Super-Gaussian random vibration test control technique based on Poisson process[J]. Journal of Vibration and Shock201231(6): 19-22, 41 (in Chinese).
20 吴家驹, 张鹏飞, 胡亚冰. 非高斯随机振动的分析基础[J]. 强度与环境201845(2): 1-8.
  WU J J, ZHANG P F, HU Y B. Analytical basis for the synthesis of non-Gaussian random vibration[J]. Structure & Environment Engineering201845(2): 1-8 (in Chinese).
21 夏静, 袁宏杰, 徐如远. 一种新的非高斯随机振动信号的模拟方法[J]. 北京航空航天大学学报201945(2): 366-372.
  XIA J, YUAN H J, XU R Y. A new simulation method of non-Gaussian random vibration signal[J]. Journal of Beijing University of Aeronautics and Astronautics201945(2): 366-372 (in Chinese).
22 朱大鹏. 非高斯随机振动下包装件时变振动可靠性分析[J]. 振动与冲击202039(16): 96-102, 134.
  ZHU D P. Time-dependent reliability analysis of package under non-Gaussian excitation[J]. Journal of Vibration and Shock202039(16): 96-102, 134 (in Chinese).
23 JACQUELIN E, BENNANI A, HAMELIN P. Force reconstruction: analysis and regularization of a deconvolution problem[J]. Journal of Sound and Vibration2003265(1): 81-107.
文章导航

/