基于几何设计法的航空发动机有限频域稳态抗扰控制器设计
收稿日期: 2022-05-13
修回日期: 2022-07-05
录用日期: 2022-08-03
网络出版日期: 2022-08-31
基金资助
国家级项目
Design of steady-state disturbance rejection controller for aeroengine based on geometric design method in finite frequency range
Received date: 2022-05-13
Revised date: 2022-07-05
Accepted date: 2022-08-03
Online published: 2022-08-31
Supported by
National Level Project
传统发动机稳态抗扰控制器在设计时,控制性能指标未能充分考虑被控对象及干扰信号的典型特征,如可作为反馈用的传感器和执行机构数量有限、干扰能量只集中在有限频域等因素,往往抗扰控制器设计的较为保守,并不总能获得满意的抗扰性能。本文提出一种可以在有限频域内采用几何图解法进行性能改进的稳态抗扰控制器设计方法“几何设计法”,该方法可以直观地在复平面上定义闭环系统各输出量在有限频域内的控制性能指标以及控制量在受限情况下的系统抗扰性能极限,从而使用图解法的形式来解决有限频域抗扰控制器的求取问题。仿真结果表明,发动机在巡航稳态工况下,面对能量主要集中在2~16 rad/s有限频域的大气湍流马赫数干扰时,基于几何设计法设计的抗扰控制器相比传统混合灵敏度H∞控制器,风扇折合转速抗扰百分比提升30%以上的同时,推力抗扰百分比提升了15%以上。
陈佳杰 , 王继强 , 张海波 , 胡忠志 , 陈新民 . 基于几何设计法的航空发动机有限频域稳态抗扰控制器设计[J]. 航空学报, 2023 , 44(9) : 327434 -327434 . DOI: 10.7527/S1000-6893.2022.27434
In the design process of traditional engine steady-state disturbance rejection controller, the control performance index fails to fully consider the typical characteristics of the controlled object and disturbance signal. For example, the number of sensors and actuators that can be used as feedback is limited, and the disturbance energy is only concentrated in the finite frequency domain. Therefore, it is not always possible to obtain satisfactory control performance. In this study, a design method of steady-state disturbance rejection controller called “Geometric Design Method” is proposed, which can improve the performance by using the geometric analysis method in the finite frequency domain. This method can intuitively define the control performance index of closed-loop system output in finite frequency domain and the output disturbance rejection performance limit when the control signal is in the limited condition. Thus, the graphical method is used to solve the problem of obtaining the disturbance rejection controller in the finite frequency domain. The simulation shows that when the aeroengine encounters the Mach number disturbance of atmospheric turbulence whose energy is mainly concentrated in 2-16 rad/s finite frequency domain under cruise steady-state conditions, compared with the traditional mixed sensitivity H∞ controller, the disturbance rejection percentage of the corrected fan speed and the thrust is increased by more than 30% and 15%, respectively.
1 | 刘云霄, 胡忠志, 王继强. 基于线性自抗扰的齿轮传动涡扇发动机控制[J]. 航空发动机, 2021, 47(5): 78-85. |
LIU Y X, HU Z Z, WANG J Q. Control of geared turbofan engine based on linear active disturbance rejection[J]. Aeroengine, 2021, 47(5): 78-85 (in Chinese). | |
2 | 王曦, 杨舒柏, 朱美印. 航空发动机控制原理[M]. 北京: 科学出版社, 2021. |
WANG X, YANG S B, ZHU M Y. Aeroengine control principles[M]. Beijing: Science Press, 2021 (in Chinese). | |
3 | 张慧凤. 基于干扰观测器的几类非线性系统抗干扰控制[D]. 沈阳: 东北大学, 2016. |
ZHANG H F. Anti-disturbance control for several classes of nonlinear systems based on disturbance observers[D]. Shenyang: Northeastern University, 2016 (in Chinese). | |
4 | 张海波, 孙健国, 孙立国. 一种涡轴发动机转速抗扰控制器设计及应用[J]. 航空动力学报, 2010, 25(4): 943-950. |
ZHANG H B, SUN J G, SUN L G. Design and application of a disturbance rejection rotor speed control method for turbo-shaft engines[J]. Journal of Aerospace Power, 2010, 25(4): 943-950 (in Chinese). | |
5 | CHEN J J, WANG J Q, LIU Y X, et al. Design and verification of aeroengine rotor speed controller based on U-LADRC[J]. Mathematical Problems in Engineering, 2020, 2020: 1-12. |
6 | 刘云霄. 齿轮传动涡扇发动机建模与抗扰控制研究和验证[D]. 南京: 南京航空航天大学, 2020. |
LIU Y X. Research and verification of geared turbofan engine modelling and disturbance rejection control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
7 | 陶涛, 阎文博. 航空发动机H∞混合灵敏度控制中权阵的选取[J]. 推进技术, 1999, 20(4): 66-70. |
TAO T, YAN W B. Construction of weighting matrixes in mixed sensitivities H∞ controller design for aeroengine[J]. Journal of Propulsion Technology, 1999, 20(4): 66-70 (in Chinese). | |
8 | GAWRONSKI W, JUANG J N. Model reduction in limited time and frequency intervals[J]. International Journal of Systems Science, 1990, 21(2): 349-376. |
9 | IWASAKI T, HARA S. Generalized KYP lemma: Unified frequency domain inequalities with design applications[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59. |
10 | 李贤伟. 基于广义KYP引理的有限频域分析与综合[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
LI X W. Finite frequency analysis and synthesis based on generalized KYP lemma[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese). | |
11 | DALEY S, WANG J G. A geometric approach to the design of remotely located vibration control systems[J]. Journal of Sound and Vibration, 2008, 318(4-5): 702-714. |
12 | WANG J Q. A single sensor and single actuator approach to performance tailoring over a prescribed frequency band[J]. ISA Transactions, 2016, 61: 329-336. |
13 | WANG J Q. Simultaneous vibration suppression and energy harvesting: Damping optimization for performance limit[J]. Mechanical Systems and Signal Processing, 2019, 132: 609-621. |
14 | WANG J Q. Optimal design for energy harvesting vibration absorbers[J]. Journal of Dynamic Systems, Measurement, and Control, 2021, 143(5): 051008. |
15 | CHAPMAN J W, LITT J S. Control design for an advanced geared turbofan engine[C]∥53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017. |
16 | CHAPMAN J W, LAVELLE T, MAY R, et al. Toolbox for the modeling and analysis of thermodynamic systems (T-MATS) user’s guide: NASA/TM-2014-216638[R].Washington, D.C.: NASA, 2014. |
17 | 朱上翔. 大气扰动及其对飞行的影响[J]. 航空学报, 1985, 6(2): 148-156. |
ZHU S X. A review of progress in the study of atmospheric disturbance and its effect on flight[J]. Acta Aeronautica et Astronautica Sinica, 1985, 6(2): 148-156 (in Chinese). | |
18 | WANG J Q. Active restricted control for harmonic vibration suppression[J]. International Journal of Structural Stability and Dynamics, 2019, 19(12): 1971007. |
19 | KOPASAKIS G. Modeling of atmospheric turbulence as disturbances for control design and evaluation of high speed propulsion systems[C]∥Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air, 2010: 201-213. |
20 | KOPASAKIS G. Atmospheric turbulence modeling for aero vehicles: Fractional order fits: NASA/TM-2010-216961[R]. Washington, D.C.: NASA, 2010. |
/
〈 |
|
〉 |