翼反角对高压捕获翼构型高超气动特性的影响
收稿日期: 2022-04-29
修回日期: 2022-07-29
录用日期: 2022-08-25
网络出版日期: 2022-08-31
基金资助
国家自然科学基金(12002347);中国科学院基础前沿科学研究计划(ZDBS-LY-JSC005)
Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration
Received date: 2022-04-29
Revised date: 2022-07-29
Accepted date: 2022-08-25
Online published: 2022-08-31
Supported by
National Natural Science Foundation of China(12002347);Basic Frontier Science Research Program of Chinese Academy of Sciences(ZDBS-LY-JSC005)
为研究翼反角变化对高压捕获翼构型高超声速气动特性的影响,基于一种双翼面、单支撑、翼身组合布局的高压捕获翼概念构型,以飞行马赫数6,飞行高度30 km为计算状态,捕获翼和机体三角翼上/下反角为设计变量,结合均匀试验设计方法、数值模拟方法和Kriging建模方法,探寻了升阻特性、纵向和横航向稳定性随翼反角的变化规律。结果表明,升力、阻力及升阻比随翼反角的变化规律基本一致,且对上反角变化更加敏感;小攻角时,翼面上反会明显降低升阻比,而下反会使升阻比先略微增大后缓慢减小;大攻角时,翼反角对升阻比的影响较小;纵向稳定性主要受三角翼反角的影响,三角翼上反时,纵向稳定性降低,下反时,纵向稳定性基本不变;翼面上/下反都会提高航向稳定性,但下反的效果更明显;翼面上反会提高横向稳定性,下反则降低,但大攻角飞行时,三角翼上反角过大可能会导致横向稳定性降低。
常思源 , 肖尧 , 李广利 , 田中伟 , 张凯凯 , 崔凯 . 翼反角对高压捕获翼构型高超气动特性的影响[J]. 航空学报, 2023 , 44(8) : 127349 -127349 . DOI: 10.7527/S1000-6893.2022.27349
To study the influence of wing dihedral/anhedral angle changes on the hypersonic aerodynamic characteristics of the High-pressure Capturing Wing (HCW) configuration, we studied the variation law of the lift-drag characteristics, and longitudinal and lateral-directional stability with the change of wing dihedral/anhedral angles based on a HCW concept configuration under the computation conditions of Mach number 6 and an altitude of 30 km. The design variables are dihedral/anhedral angles of HCW and delta wings, and some techniques, such as the uniform experimental design method, numerical simulation method, and Kriging modeling method, were utilized in the analysis. The results show that the lift, drag, and lift-drag ratio have similar variation trends with the change of wing dihedral/anhedral angles, and are more sensitive to the change of the dihedral angle. At small angles of attack, the wing dihedral significantly reduces the lift-drag ratio, while the anhedral slightly increases and then slowly decreases it. At large angles of attack, the wing dihedral/anhedral angles have less influence on the lift-drag ratio. The longitudinal stability is mainly affected by the dihedral/anhedral angles of the delta wing. Specifically, the delta wing dihedral decreases the longitudinal stability, while the anhedral hardly affects it. Both the wing dihedral and anhedral angles improve the directional stability, with the effect of the anhedral stronger. The wing dihedral raises the lateral stability, while the anhedral lowers it. However, at a large angle of attack, the large dihedral angle of the delta wing may lead to a decrease in lateral stability.
1 | 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012. |
CAI G B, XU D J. Technology of hypersonic vehicle [M]. Beijing: Science Press, 2012 (in Chinese). | |
2 | SULLIVAN R, WINTERS B. X-34 program overview[C]∥ 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998. |
3 | JAZRA T, PRELLER D, SMART M K. Design of an airbreathing second stage for a rocket-scramjet-rocket launch vehicle[J]. Journal of Spacecraft and Rockets, 2013, 50(2): 411-422. |
4 | SIM A G. A correlation between flight-determined derivatives and wind-tunnel data for the X-24B research aircraft: NASA-113084[R]. Washingtan,D.C.:NASA Langley Research Center, 1997. |
5 | WALKER S, SHERK J, SHELL D, et al. The DARPA/AF falcon program: The hypersonic technology vehicle #2 (HTV-2) flight demonstration phase[C]∥ 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
6 | NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528. |
7 | JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1): 56-72. |
8 | KüCHEMANN D. The aerodynamic design of aircraft[M]. Reston: AIAA, 2012. |
9 | VIVIANI A, IUSPA L, APROVITOLA A. Multi-objective optimization for re-entry spacecraft conceptual design using a free-form shape generator[J]. Aerospace Science and Technology, 2017, 71: 312-324. |
10 | SHEN Y, HUANG W, YAN L, et al. Constraint-based parameterization using FFD and multi-objective design optimization of a hypersonic vehicle[J]. Aerospace Science and Technology, 2020, 100: 105788. |
11 | 崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学: 物理学 力学 天文学, 2013, 43(5): 652-661. |
CUI K, LI G L, HU S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(5): 652-661 (in Chinese). | |
12 | CUI K, LI G L, XIAO Y, et al. High-pressure capturing wing configurations[J]. AIAA Journal, 2017, 55(6): 1909-1919. |
13 | LI G L, CUI K, XU Y Z, et al. Experimental investigation of a hypersonic I-shaped configuration with a waverider compression surface[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(5): 254721. |
14 | MILLER R, ARGROW B, CENTER K, et al. Experimental verification of the osculating cones method for two waverider forebodies at Mach 4 and 6[C]∥ 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998. |
15 | 李广利, 崔凯, 肖尧, 等. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. |
LI G L, CUI K, XIAO Y, et al. The design method research for the position of high pressure capturing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584 (in Chinese). | |
16 | 李广利, 崔凯, 肖尧, 等. 高压捕获翼前缘型线优化和分析[J]. 力学学报, 2016, 48(4): 877-885. |
LI G L, CUI K, XIAO Y, et al. Leading edge optimization and parameter analysis of high pressure capturing wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885 (in Chinese). | |
17 | CUI K, XIAO Y, XU Y Z, et al. Hypersonic I-shaped aerodynamic configurations[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(2): 024722. |
18 | 王浩祥, 李广利, 徐应洲, 等. 高压捕获翼构型跨声速流动特性初步研究[J]. 空气动力学学报, 2020, 38(3): 441-447. |
WANG H X, LI G L, XU Y Z, et al. Preliminary study on transonic flow characteristics of a high-pressure capturing wing configuration[J]. Acta Aerodynamica Sinica, 2020, 38(3): 441-447 (in Chinese). | |
19 | 王浩祥, 李广利, 杨靖, 等. 高压捕获翼构型亚跨超流动特性数值研究[J]. 力学学报, 2021, 53(11): 3056-3070. |
WANG H X, LI G L, YANG J, et al. Numerical study on flow characteristics of high-pressure capturing wing configuration at subsonic, transonic and supersonic regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3056-3070 (in Chinese). | |
20 | 田鹏, 李广利, 崔凯, 等. 高压捕获翼构型的跨流域气动特性[J]. 空气动力学学报, 2021, 39(3): 11-20. |
TIAN P, LI G L, CUI K, et al. Aerodynamic characteristics of high-pressure capturing wing configuration in multi-regime[J]. Acta Aerodynamica Sinica, 2021, 39(3): 11-20 (in Chinese). | |
21 | 杜涛, 陈宇, 蔡巧言, 等. 高超声速飞行器先进气动布局的设计原理研究[J]. 空气动力学学报, 2015, 33(4): 501-509. |
DU T, CHEN Y, CAI Q Y, et al. Research on aerodynamic configuration design principle for advanced hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(4): 501-509 (in Chinese). | |
22 | 高清, 李潜. 美国高超声速飞行器横侧向稳定性研究[J]. 飞航导弹, 2012(12): 14-18. |
GAO Q, LI Q.[J]. Aerodynamic Missile Journal, 2012(12): 14-18 (in Chinese). | |
23 | DALLE D, TORREZ S, DRISCOLL J. Sensitivity of flight dynamics of hypersonic vehicles to design parameters[C]∥ 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012. |
24 | PEZZELLA G, MARINI M, CICALA M, et al. Aerodynamic characterization of HEXAFLY scramjet propelled hypersonic vehicle[C]∥ 32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. |
25 | LIU W, ZHANG C A, WANG X P, et al. Parametric study on lateral-directional stability of hypersonic waverider[J]. AIAA Journal, 2021: 1-18. |
26 | 孟旭飞, 白鹏, 李盾, 等. 上/下反翼对双后掠乘波体高超特性的影响[J]. 航空学报, 2022, 43(2): 124998. |
MENG X F, BAI P, LI D, et al. Effect of dihedral wings on hypersonic performance of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124998 (in Chinese). | |
27 | 方开泰. 均匀试验设计的理论、方法和应用: 历史回顾[J]. 数理统计与管理, 2004, 23(3): 69-80. |
FANG K T.[J]. Application of Statistics and Management, 2004, 23(3): 69-80 (in Chinese). | |
28 | THOMPSON R A. Review of X-33 hypersonic aerodynamic and aerothermodynamic development[R].Washington,D.C. : NASA Langley Research Center, 2000. |
29 | 祝立国, 赵俊波, 叶友达. 高速飞行器耦合失稳分析及应用[M]. 北京: 国防工业出版社, 2015. |
ZHU L G, ZHAO J B, YE Y D. Coupling departure analysis and applications of high speed aircrafts[M]. Beijing: National Defense Industry Press, 2015 (in Chinese). |
/
〈 |
|
〉 |