超高灵敏极弱磁场与惯性测量科学装置与零磁科学展望

  • 房建成 ,
  • 魏凯 ,
  • 江雷 ,
  • 向岷 ,
  • 陆吉玺
展开
  • 1. 北京航空航天大学
    2. 中国科学院理化技术研究所

收稿日期: 2022-07-04

  修回日期: 2022-08-17

  网络出版日期: 2022-08-18

Scientific facility for ultrasensitive measurement of magnetic field and inertial rotation and prospect of zero-magnetism science

  • FANG Jian-Cheng ,
  • WEI Kai ,
  • JIANG Lei ,
  • XIANG Min ,
  • LU Ji-Xi
Expand

Received date: 2022-07-04

  Revised date: 2022-08-17

  Online published: 2022-08-18

摘要

超高灵敏极弱磁场与惯性量子精密测量技术已被广泛应用于人体脑磁和心磁等生物磁信号成像领域,以及暗物质和第五力探测、固有电偶极矩测量和基本对称性破缺验证等前沿基础物理探索,为认识物质世界提供了强有力的工具;同时在磁异常探测和高精度惯性导航系统等国家安全领域有着迫切应用需求。继续冲击超高灵敏度测量纪录和打造极弱磁场环境,是进一步探索基础物理研究边界、拓展生物磁成像应用和服务国家战略需求的关键。首先,本文对超高灵敏极弱磁场与惯性测量科学装置和基础应用进行概要介绍,涉及工作原理、系统组成和设计分析方法。然后,对无自旋交换弛豫原子磁强计和零磁空间进行概要分析,为指标性能进一步提升指明方向。最后,虽然强磁场环境下物性研究已经取得丰硕成果,但是极弱磁场环境中的基础科学研究十分匮乏,本文提出“零磁科学”基础研究设想,基于超高灵敏极弱磁场与惯性测量科学装置的技术基础,利用极弱磁场环境、超高灵敏磁测量和精密磁场操控方法,开展零磁医学、零磁生物学、零磁化学和零磁材料学的基础科学研究,有望构建“零磁科学”系统理论。

本文引用格式

房建成 , 魏凯 , 江雷 , 向岷 , 陆吉玺 . 超高灵敏极弱磁场与惯性测量科学装置与零磁科学展望[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2022.27752

Abstract

Ultrasensitive atomic magnetometer and co-magnetometer have provided powerful tools for study the material world. These devises are widely used in imaging of biomagnetic signals and frontier physics research, such as magnetocardiography, magne-toencephalography, searching for dark matter and fifth force, measurement of permanent electric dipole moment and violation of fundamental symmetry. Magnetic anomaly detection and high-precision inertial navigation systems also urgently need these devices. Improving the sensitivity records and building ultra-low magnetic field environment are pivotal for further researches of fundamental physics, biomagnetic imaging and major national needs. Firstly, the schematic introductions of Ultrasensitive atomic magnetometer and co-magnetometer as well as fundamental studies are present, including the working principle, exper-iment setup, and theoretical modal. Secondly, the schematic introductions of atomic magnetometers and magnetic shield room are present, specifying the ways to improve the performance. Meanwhile, the research on physical properties in the strong magnetic field environment has achieved fruitful results, but the basic scientific research in the extremely weak magnetic field environment is very scarce. Based on the ultrasensitive atomic magnetometer, co-magnetometer and magnetic shield room, Zero-Magnetism Science is proposed in this paper, which utilizes ultra-low magnetic field environment, ultrasensitive magne-tometer, and precise magnetic field manipulation to study basic scientific researches, including zero-magnetism medicine, zero-magnetism biology, zero-magnetism chemistry and zero-magnetism materials science, promising for constructing a sys-tem theory of "Zero-Magnetism Science".

参考文献

[1] DEGEN C L, REINHARD F, CAPPELLARO P. Quan-tum sensing[J]. Reviews of modern physics, 2017, 89(3): 035002
[2] PEZZE L, SMERZI A, OBERTHALER M K, et al. Quantum metrology with nonclassical states of atomic ensembles[J]. Reviews of Modern Physics, 2018, 90(3): 035005.
[3] BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applica-tions with a wearable system[J]. Nature, 2018, 555(7698): 657-661.
[4] BUDKER D, ROMALIS M. Optical magnetometry[J]. Nature physics, 2007, 3(4): 227-234.
[5] TERRANO W A, ROMALIS M V. Comagnetometer probes of dark matter and new physics[J]. Quantum Science and Technology, 2021, 7(1): 014001.
[6] ALMASI A, LEE J, WINARTO H, et al. New limits on anomalous spin-spin interactions[J]. Physical re-view letters, 2020, 125(20): 201802.
[7] KORNACK T W, GHOSH R K, ROMALIS M V. Nuclear spin gyroscope based on an atomic comagne-tometer[J]. Physical review letters, 2005, 95(23): 230801.
[8] TIM M. TIERNEY, NIALL HOLMES, STEPHANIE MELLOR, et al. Optically pumped magnetometers: From quantum origins to multi-channel magne-toencephalography [J]. NeuroImage, 2019, 199(1): 598-608.
[9] SAFRONOVA M S, BUDKER D, DEMILLE D, et al. Search for new physics with atoms and molecules[J]. Reviews of Modern Physics, 2018, 90(2): 025008.
[10] BROWN J M, SMULLIN S J, KORNACK T W, et al. New limit on lorentz-and C P T-violating neutron spin interactions[J]. Physical review letters, 2010, 105(15): 151604.
[11] LEE J, ALMASI A, ROMALIS M. Improved limits on spin-mass interactions[J]. Physical review letters, 2018, 120(16): 161801.
[12] VASILAKIS G, BROWN J M, KORNACK T W, et al. Limits on New Long Range Nuclear Spin-Dependent Forces Set with a K?3He Comagnetometer[J]. Physical review letters, 2009, 103(26): 261801.
[13] JI W, CHEN Y, FU C, et al. New experimental limits on exotic spin-spin-velocity-dependent interactions by using SmCo5 spin sources[J]. Physical review letters, 2018, 121(26): 261803.
[14] ABEL C, AFACH S, AYRES N J, et al. Measurement of the permanent electric dipole moment of the neu-tron[J]. Physical Review Letters, 2020, 124(8): 081803.
[15] PASSARO V, CUCCOVILLO A, VAIANI L, et al. Gyroscope technology and applications: A review in the industrial perspective[J]. Sensors, 2017, 17(10): 2284.
[16] ZHANG C, YUAN H, TANG Z, et al. Inertial rotation measurement with atomic spins: From angular mo-mentum conservation to quantum phase theory[J]. Applied Physics Reviews, 2016, 3(4): 041305.
[17] LI R, FAN W, JIANG L, et al. Rotation sensing using a K-Rb-21Ne comagnetometer[J]. Physical Review A, 2016, 94(3): 032109.
[18] 张朝,刘济民,杨林.磁探潜关键技术现状及发展趋势[J].科学技术与工程,2022,22( 1) : 18-27.
ZHANG C, LIU J M, YANG L. Situation and Devel-opment Trend of the Key Technology of Magnetic Submarine Exploration [J]. Science Technology and Engineering. 2022, 22(1) : 18-27. (in Chinese).
[19] 成建波,孙心毅.航空磁异常探潜技术发展综述[J]. 声学与电子工程, 2018(03): 46-49.
Cheng J B, SUN X Y. Review of aeronautic magnetic anomaly exploration[J]. Acoustics and Electronic En-gineering. 2018(03): 46-49. (in Chinese).
[20] DANG H B., MALOOP A C, ROMALIS M V. Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Ap-plied Physics Letters, 2010, 97(15): 151110
[21] TSUAKAWA H, SHIBUYA H, TAKAHASHI F, et al. Lunar Magnetic Field Observation and Initial Global Mapping of Lunar Magnetic Anomalies by MAP-LMAG Onboard SELENE (Kaguya)[J]. Space Science Reviews, 2010, V154: 219–251.
[22] RUNCORN S K. An Ancient Lunar Magnetic Dipole Field[J]. Nature, Nature Publishing Group, 1975, V253(5494): 701–703.
[23] 李磊, 王劲东, 周斌, et al. 磁通门磁强计在深空探测中的应用[J]. 深空探测学报, 2017, V4(6): 529–534.
LI L, WANG J D, ZHOU B, et al. Application of fluxgate magnetometer in deep space exploration[J]. Journal of Deep Space Exploration, 2017, V4(6): 529–534. (in Chinese).
[24] LI C, ZHANG R, YU D., et al. China’s Mars Explora-tion Mission and Science Investigation[J]. Space Sci-ence Reviews, 2021, V217(4): 57.
[25] ALLRED J C, LYMAN R N, KORNACK T W and ROMALIS M V. High-Sensitivity Atomic Magnetom-eter Unaffected by Spin-Exchange Relaxation[J]. Physical Review Letters, 2002, 89(13): 130801.
[26] KOMINIS I K, KORNACK T W, ALLRED J C and ROMALIS M V. A subfemtotesla multichannel atomic magnetometer. Nature, 2003, 422(6932): 596-599.
[27] MA D, LU J, FANG X, et al Parameter Modeling Analysis of a Cylindrical Ferrite Magnetic Shield to Reduce Magnetic Noise[J]. IEEE Transactions on In-dustrial Electronics, 2022, 69(1): 991-998.
[28] TROULLINOU C, JIMENEZ R, KONG J, et al. Squeezed-Light Enhancement and Backaction Evasion in a High Sensitivity Optically Pumped Magnetometer [J]. Physical Review Letters, 2021, 127(19): 193601.
[29] QUAN W, WEI K, ZHAO T, et al. Synchronous measurement of inertial rotation and magnetic field using a K? Rb? 21Ne comagnetometer[J]. Physical Review A, 2019, 100(1): 012118.
[30] WEI K, ZHAO T, FANG X, et al. Broadening of mag-netic linewidth by spin-exchange interaction in the K-Rb-21 Ne comagnetometer[J]. Optics Express, 2020, 28(22): 32601-32611.
[31] WEI K, ZHAO T, FANG X, et al. Simultaneous de-termination of the spin polarizations of noble-gas and alkali-metal atoms based on the dynamics of the spin ensembles[J]. Physical Review Applied, 2020, 13(4): 044027.
[32] KORNACK T W, ROMALIS M V. Dynamics of two overlapping spin ensembles interacting by spin ex-change[J]. Physical Review Letters, 2002, 89(25): 253002.
[33] WEI K, ZHAO T, FANG X, et al. In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts[J]. Optics express, 2019, 27(11): 16169-16183.
[34] SMICIKLAS M, BROWN J M, CHEUK L W, et al. New Test of Local Lorentz Invariance Using a Ne 21? Rb? K Comagnetometer[J]. Physical review letters, 2011, 107(17): 171604.
[35] SMICIKLAS M, VERNAZA A, ROMALIS M. Test of Lorentz Invariance at the Amundsen-Scott South Pole Station[J]. Bulletin of the American Physical Society, 2013, 58.
[36] FANG J., QIN J. Advances in Atomic Gyroscopes: a View from Inertial Navigation Applications[J]. Sen-sors, 2012, V12(5): 6331-6346.
[37] ROMALIS M., KORNACK T. Chip-Scale Combinato-rial Atomic Navigator (C-SCAN) Low Drift Nuclear Spin Gyroscope[R]. Princeton: Princeton University, 2018.
[38] RENON G., ZAHZAM N., BIDEL Y., et al. A Nucle-ar-Electronic Spin Gyro-Comagnetometer[C]. APS Division of Atomic, Molecular and Optical Phys-ics Meeting Abstracts, 2013: 2013APS..DMP.Q1135R.
[39] JIANG L., QUAN W., LI R., et al. A Parametrically Modulated Dual-Axis Atomic Spin Gyroscope[J]. Ap-plied Physics Letters, 2018, V112(5): 054103.
[40] FU Y., FAN W., RUAN J., et al. Effects of Probe Laser Intensity on Co-Magnetometer Operated in Spin-Exchange Relaxation-Free Regime[J]. IEEE Transac-tions On Instrumentation And Measurement, 2022, V71: 1-7.
[41] SHI M. Investigation on Magnetic Field Response of a 87Rb-129Xe Atomic Spin Comagnetometer[J]. Optics Express, 2020, V28(21): 32033-32041
[42] Lu F, Lu J., Li B, et al. Triaxial vector operation in near-zero field of atomic magnetometer with femtotes-la sensitivity[J]. IEEE Transactions on Instrumenta-tion and Measurement, 2022, 71: 1501210.
[43] 王礼庭. 中日人口老龄化的经济影响及对策比较研究[D]. 华东师范大学, 2020.
WANG L, A comparative study on the economic im-pacts and countermeasures of aging population in China and Japan[D], East China Normal University, 2020.
[44] 朱翠明. 中国现代化进程中的人口老龄化问题与应对研究[D]. 吉林大学, 2021.
ZHU C, Aging of population in the process of mod-ernization in China and its countermeasures[D], Jilin University, 2021.
[45] CAO F, AN N, XU W, et al. Co-registration compari-son of on-scalp magnetoencephalography and magnet-ic resonance imaging[J]. Frontiers in Neuroscience, 2021, 15: 706785.
[46] AN N, CAO F, LI W, et al. Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation ap-proach[J]. iScience, 2022, 25(2): 103752.
[47] YANG Y, XU M, LIANG A, et al. A new wearable mul-tichannel magnetocardiogram system with a SERF atomic magnetometer array[J]. Scientific Re-ports, 2021, 11(1): 5564..
[48] COHEN D. A shielded facility for low‐level magnet-ic measurements[J]. Journal of Applied Physics, 1967, 38(3): 1295-1296.
[49] ERNé S. N., HAHLBOHM H. D., PALOW J.. The Berlin Magnetically Shielded Room (BMSR) Section C - Periphery[G]. Biomagnetism. Berlin, Boston: De Gruyter, 1981: 89–94.
[50] Bork J., Hahlbohm H. D., Klein R., et al. The 8-layered magnetically shielded room of the PTB: De-sign and construction[C]. Biomag2000, Proc. 12th Int. Conf. on Biomagnetism. 2000.
[51] Design, Construction, and Performance of A Magneti-cally Shielded Room for A Neutron Spin Echo Spec-trometer[J]. Nuclear Instruments and Methods in Physics Research A, 2011,V 644(1): 40-47.
[52] ALTAREV I, BALES M, BECK D H, et al. A large-scale magnetic shield with 106 damping at millihertz frequencies[J]. Journal of Applied Physics, 2015, 117(18): 183903.
[53] 张志友. 零磁室内环境磁场噪声的测定[J]. 烟台大学学报( 自然科学与工程版), 1989(2): 37–41.
ZHANG Z Y, LI J Z, LIU J B, et al. The ambient mag-netic noise measurements of magnetically shielded room [J] Journal of Yantai University (Natural Science and Engineering), 1989(2): 37–41 (in Chinese).
[54] AZEVEDO F A, CARVALHO L R, GRINBERG L T, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain[J]. Journal of Comparative Neurology, 2009, 513(5): 532-541.
[55] SARIMOV R, BINHI V, MILYAEV V. The influence of geomagnetic field compensation on human cogni-tive processes[J]. Biophysics, 2008, 53(5): 433-441.
[56] MO W C, FU J P, DING H M, et al. Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice[J]. Prog Biochem Biophys, 2015, 42(7): 639-646.
[57] WAN G jun, JIANG S lin, ZHAO Z chao, et al. Bio-effects of near-zero magnetic fields on the growth, de-velopment and reproduction of small brown planthop-per, Laodelphax striatellus and brown planthopper, Nilaparvata lugens[J]. Journal of insect physiology, 2014, 68: 7-15.
[58] MO W chuan, ZHANG Z jian, LIU Y, et al. Magnetic shielding accelerates the proliferation of human neu-roblastoma cell by promoting G1-phase progression[J]. PloS one, 2013, 8(1): e54775.
[59] PYLKK?NEN L. The neural basis of combinatory syntax and semantics[J/OL]. Science, 2019, 366(6461): 62-66.
[60] HILL R M, BOTO E, HOLMES N, et al. A tool for functional brain imaging with lifespan compli-ance[J/OL]. Nature Communications, 2019, 10(1): 4785.
[61] BOTO E, HOLMES N, LEGGETT J, et al. Moving magnetoencephalography towards real-world applica-tions with a wearable system[J/OL]. Nature, 2018, 555(7698): 657-661.
[62] 国家心血管病中心. 中国心血管健康与疾病报告.2020 [M]. 北京:科学出版社, 2021.
National Center for Cardiovascular Diseases. Annual Report on Cardiovascular Health and Diseases in Chi-na 2020 [M].Beijing: Science Press, 2021(in Chinese).
[63] PENA M E, PEARSON C L, GOULET M P, et al. A 90-second magnetocardiogram using a novel analysis system to assess for coronary artery stenosis in Emer-gency department observation unit chest pain patients [J]. IJC Heart Vasculature, 2020, 26: 1-7.
[64] AITA S, OGATA K, YOSHIDA K, et al. Noninvasive Mapping of Premature Ventricular Contractions by Merging Magnetocardiography and Computed Tomog-raphy [J]. JACC Clin Electrophysiol, 2019, 5(10): 1144-57.
[65] STRAND S, LUTTER W, STRASBURGER J F, et al. Low‐Cost Fetal Magnetocardiography: A Comparison of Superconducting Quantum Interference Device and Optically Pumped Magnetometers [J]. Journal of the American Heart Association: Cardiovascular Cerebro-vascular Disease, 2019, 8(16): 1-10.
[66] 魏武强,应用于影像组学的肿瘤电磁成像技术研,西安电子科技大学,2018.
Wuqiang wei, Study on electromagnetic imaging of tumor applying to Radiomics[M], Xidian University, 2018.
[67] Wei-Lei Yang, Zhen Lu & Robert C. Bast Jr. The role of biomarkers in the management of epithelial ovarian cancer, Expert Review of Molecular Diagnostics, 2017.
[68] Johnson C, Adolphi NL, Butler KL et al. Magnetic Relaxometry with an Atomic Magnetometer and SQUID Sensors on Targeted Cancer Cells. J Magn Magn Mater, 324(17), 2613-2619, 2012.
[69] Baskin D S, Sharpe M A , Nguyen L , et al. Case Re-port: End-Stage Recurrent Glioblastoma Treated With a New Noninvasive Non-Contact Oncomagnetic De-vice[J]. Frontiers in Oncology, 2021, 11:708017.
[70] 李定忠,傅松涛,李秀章. 关于经络实质的探讨——关于经络的理论与临床应用研究之三[J]. 中国针灸, 2005(01): 57-63.
LI D Z, FU S T, LI X Z. Discussion on the essence of meridians -- the third study on the theory and clinical application of meridians [J].Chinese Acupuncture, 2005(01): 57-63(in Chinese).
[71] Dhond, Rupali P, Witzel, Thomas,et al. Spatiotem-poral Mapping the Neural Correlates of Acupuncture with MEG[J]. Journal of Alternative & Complemen-tary Medicine, 2008, 14(6):679-688.
[72] Witzel, T., et al., Differences in cortical response to acupressure and electroacupuncture stimuli. BMC NEUROSCIENCE, 2011. 12(73).
[73] Asghar, A.U.R., et al., Oscillatory neuronal dynamics associated with manual acupuncture: a magne-toencephalography study using beamforming analysis. FRONTIERS IN HUMAN NEUROSCIENCE, 2012. 6(303).
[74] You, Y., et al., Altered Hub Configurations with-in Default Mode Network following Acupuncture at ST36: A Multimodal Investigation Combining fMRI and MEG. PLOS ONE, 2013. 8(UNSP e645095).
[75] 周万松. 磁疗的发展与现状[J]. 人民军医, 2002, 45(10):3.
ZHOU W S. Development and current situation of magnetic therapy [J]. People's military medicine, 2002, 45 (10): 3(in Chinese).
[76] 高鹏, 丛竹凤. 现代磁疗技术在肿瘤治疗中的应用进展[J]. 山东中医杂志, 2012, 31(10):3.
GAO P, CONG Z F. Application progress of modern magnetic therapy technology in tumor treatment [J] Shandong Journal of traditional Chinese medicine, 2012, 31 (10): 3(in Chinese).
[77] 达先鸿, 李若男, 李翔,等. 磁性载药纳米颗粒在癌症化学治疗中的发展现状[J]. 中华生物医学工程杂志, 2021, 27(2):7.
DA X H, LI R N, LI X, et al. Development status of magnetic drug loaded nanoparticles in cancer chemo-therapy [J] Chinese Journal of Biomedical Engineer-ing, 2021, 27 (2): 7(in Chinese).
[78] 吴闽枫. 磁疗的治疗技术和方法[J]. 药物与人, 2014(7):310-310.
WU M F. Therapeutic techniques and methods of magnetic therapy [J] Drugs and people, 2014 (7): 310-310(in Chinese).
[79] 闾坚强, 韩星海, 徐美娟,等. 磁疗磁场分布测量及剂量表达方法[J]. 中国组织工程研究, 2006, 10(029):112-114.
LU J Q, HAN X H, XU M J, et al. Magnetic field dis-tribution measurement and dose expression method of magnetic therapy [J] China tissue engineering research, 2006, 10 (029): 112-114(in Chinese).
[80] WEN Liping., ZHANG Xiqi., TIAN Ye. et al. Quan-tum-confined superfluid: From nature to artificial. Sci. China Mater. 61, 1027–1032 (2018).
[81] XIAO Kai, XIE Ganhua, ZHANG Zhen, et al. En-hanced Stability and Con-trollability of an Ionic Di-ode Based on Funnel‐Shaped Nanochannels with an Extended Critical Region[J]. Advanced Materials, 2016, 28(17): 3345-3350.
[82] 柴大敏, 向青, 陶仪声,等. 空间环境对植物影响的研究进展[J]. 科技导报, 2007(01):38-42.
Chai D M, Xiang Q, Tao Y S, et al. Progress on the Ef-fect on Space Environment on Plant[J]. Science & Technology Review, 2007(01):38-42(in Chinese).
[83] Xu CX, Yin X, Lv Y, et al. A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis. Adv Space Res, 2012, 49: 834-840
[84] 郭苇, 方志财, 黄继荣. 磁生物学在模式植物拟南芥中的研究进展[J]. 生命的化学, 2019(5):897-902.
Guo W, Fang Z C, Huang J R. Progress of magnetobi-ological study on the model plant Arabidopsis thali-ana[J]. Chemistry of Life, 2019(5):897-902(in Chi-nese).
[85] Blakemore R. Magnetotactic bacteria[J]. Science, 1975, 190(4212): 377-379.
[86] Endres C S, Putman N F, Ernst D A, et al. Multi-modal homing in sea turtles: modeling dual use of ge-omagnetic and chemical cues in island-finding[J]. Frontiers in behavioral neuroscience, 2016, 10: 19.
[87] Yan Meng-meng, Zhang Lei et al. Effect of a near-zero magnetic field on development and flight of oriental armyworm (Mythimna separata). Journal of Integra-tive Agriculture.page:1336-1345 (2021).
[88] Alanna V. Van Huizen1, Jacob M. Morton1, Luke J. Kinsey1. Weak magnetic fields alter stem cell–mediated growth.
[89] BrysiewiczORCID Icon & Krzysztof Formicki.The effect of static magnetic field on melanophores in the sea trout (Salmo trutta m. trutta Linnaeus, 1758) em-bryos and larvae.Journal of Animal Science2019, Vol. 18, No. 1, 1431-1437.
[90] 蔡新景, 李博, 王新新,等. 外部磁场对低气压氩气等离子体电子输运特性的影响[J]. 中国电机工程学报, 2016, 36(22):6286-6293.
CAI X, LI B, WANG X, ZOU X, et al. Effect of Ex-ternal Magnetic Field on Electron Transport Properties of Low Pressure Argon Plasmas [J]. Proceedings of the CSEE, 2016, 36(22):6286-6293 (in Chinese).
[91] 黄小龙, 王立军, 贾申利,等. 纵向磁场和外部横向磁场共同作用下真空电弧偏移与阳极偏烧现象的仿真研究[J]. 中国电机工程学报, 2014, 000(006):941-946.
HUANG X, WANG L, JIA S, et al. Simulation Re-search of Deflection Phenomenon of Vacuum Arc and Anode Erosion Under the Combined Action of Axial Magnetic Field and External Transverse Magnetic Field [J]. Proceedings of the CSEE, 2014, 000(006):941-946 (in Chinese).
[92] CICHON N, BIJAK M, SYNOWIEC E , et al. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 2018, 78(7-8):626-631.
[93] RAVERA S , REPACI E , MORELLI A , et al. Elec-tromagnetic field of extremely low frequency de-creased adenylate kinase activity in retinal rod outer segment membranes[J]. Bioelectrochemistry, 2004, 63(1-2):317-320.
[94] PIACENTINI M P, FRATERNALE D , PIATTI E , et al. Senescence delay and change of antioxi-dant enzyme levels in Cucumis sativus L. etiolated seedlings by ELF magnetic fields[J]. Plant Science, 2001, 161(1):45-53.
[95] 何磊, 胡斌. 有机自旋光电子学的基本过程[J]. 中国科学:化学, 2013, 43(004):375-397.
HE L, HU B. The Basic Process of Organic Spin Op toelectronics[J]. SCIENTIA SINICA Chimica, 2013, 43(004):375-397.
[96] KAMLESH A, MIWAKO M, TOSHIFUMI I, et al. Magnetic field effect on fluorescence in a mixture of Nethylcarbazole and dimethyl terephthalate in a pol-ymer film in the presence of electric fields [J]. Journal of Physical Chemistry A, 2008, 112(19):4432-6.
[97] ITO F , IKOMA T , AKIYAMA K , et al. Carrier generation process on photoconductive poly-mer films as studied by magnetic field effects on the charge-transfer fluorescence and photocurrent.[J]. Journal of Physical Chemistry B, 2005, 109(18):8707-17.
[98] FRANCE L , YOHAN G . A New Tool for Separating the Magnetic Mineralogy of Complex Mineral Assem-blages from Low Temperature Magnetic Behavior[J]. Frontiers in Earth Science, 2017, 5:61.
[99] 李泳泉, 刘建忠, 欧阳自远,等. 月球磁场与月球演化[J]. 地球物理学进展, 2005, 20(4):1003-1008.
LI Y, LIU J, OU Y, et al. Lunar magnetism and its evo-lution[J]. PROGRESS IN GEOPHYSICS, 2005, 20(4):1003-1008.
[100] RICHMOND N C , HOOD L L, H ALEKAS J S , et al . Correl at ion of a strong lunar magnetic anomaly with a high-albedo region of the Descartes mountains [ J]. Geophysical Research Letters , 2003 , 30(7):1395-1398.
文章导航

/