翼面结冰过程中的冰晶运动相变与黏附特性
收稿日期: 2022-07-15
修回日期: 2022-08-01
录用日期: 2022-08-11
网络出版日期: 2022-08-17
基金资助
国家自然科学基金(12132019);国家科技重大专项(J2019-III-0010-0054)
Phase change and adhesion characteristics of ice crystal movements in wing icing
Received date: 2022-07-15
Revised date: 2022-08-01
Accepted date: 2022-08-11
Online published: 2022-08-17
Supported by
National Natural Science Foundation of China(12132019);National Science and Technology Major Project(J2019-III-0010-0054)
冰晶的运动、相变、黏附现象广泛存在于航空发动机内部结冰过程中,开展相应的计算方法研究,系统分析冰晶运动相变与黏附特性是研究发动机内部结冰、保证飞行安全的迫切需求。针对冰晶运动相变及黏附特性计算,建立了拉格朗日框架下冰晶运动-传热传质耦合的数值计算方法,分析了基于Monte Carlo方法的冰晶撞击与黏附收集系数计算方法,基于NNWICE平台开发了相应的计算程序。以NACA0012翼型为对象,计算研究了扁椭球状、六角平板状和长椭球状3种非球状冰晶颗粒与球状冰晶的运动、传热传质过程,系统分析了来流温度等参数对冰晶黏附特性的影响,得到了冰晶形状对冰晶运动轨迹和融化过程的影响规律及来流总温与液态水含量/总水含量(LWC/TWC)对冰晶黏附特性的影响规律。相关工作为进一步分析混合相结冰数值模拟计算奠定了工作基础。
马乙楗 , 柴得林 , 王强 , 易贤 , 孔满昭 . 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023 , 44(1) : 627817 -627817 . DOI: 10.7527/S1000-6893.2022.27817
The movement, phase change and adhesion of ice crystals widely exist in the process of internal icing of aircraft engines. To study the internal icing of the engine and ensure flight safety, we explore the corresponding calculation methods, and systematically analyze the phase transition and adhesion characteristics of ice crystals. In view of the calculation of the phase transition and adhesion characteristics of ice crystals, a numerical calculation method of coupling the ice crystal motion-heat and the mass transfer under the Lagrange framework was established, the calculation method of the impact and adhesion collection coefficient of ice crystals based on the Monte Carlo method proposed, and the corresponding calculation procedure developed based on the NNWICE platform. Taking the NACA0012 airfoil as the research object, we calculated the motion and heat transfer process of three non-spherical ice crystal particles and spherical ice crystals in oblate, hexagonal flat and prolate, systematically analyzing the influence of incoming flow temperature on the adhesion characteristics of ice crystals. The influence of the ice crystal shape on the motion trajectory and melting process of ice crystals, and the effect of the total temperature of the incoming flow and Liquid Water Content/Total Water Content (LWC/TWC) on the adhesion characteristics of ice crystals were obtained. This work lays the foundation for further development of numerical simulation calculations for mixed-phase icing.
1 | MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight: AIAA-2006-0206[R]. Reston: AIAA, 2006. |
2 | 黄平, 卜雪琴, 刘一鸣, 等. 混合相/冰晶条件下的结冰研究综述[J]. 航空学报, 2022, 43(5): 025178. |
HUANG P, BU X Q, LIU Y M, et al. Mixed phase/glaciated ice accretion: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 025178 (in Chinese). | |
3 | RíOS M, CHO Y. Analysis of ice crystal ingestion as a source of ice accretion inside turbofans: AIAA-2008-4165[R]. Reston: AIAA, 2008. |
4 | JORGENSON P C E, VERES J P, WRIGHT W B, et al. Engine icing modeling and simulation (part I): Ice crystal accretion on compression system components and modeling its effects on engine performance[C]∥SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing. Warrendale: SAE International, 2011. |
5 | OLIVER M. Ice crystal icing engine testing in the NASA Glenn research center's propulsion systems laboratory: Altitude investigation[J]. SAE International Journal of Aerospace, 2015, 8(1): 33-37. |
6 | 郭琪磊, 牛俊杰, 安博, 等. 混合相态冰晶积冰的数值研究[J]. 空气动力学学报, 2021, 39(2): 168-175. |
GUO Q L, NIU J J, AN B, et al. Numerical simulation of ice crystal icing under mixed-phase conditions[J]. Acta Aerodynamica Sinica, 2021, 39(2): 168-175 (in Chinese). | |
7 | BIDWELL C, RIGBY D. Ice particle analysis of the honeywell ALF502 engine booster[C]∥SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2015. |
8 | TRONTIN P, BLANCHARD G, KONTOGIANNIS A, et al. Description and assessment of the new ONERA 2D icing suite IGLOO2D: AIAA-2017-3417[R]. Reston: AIAA, 2017. |
9 | WRIGHT W, JORGENSON P, VERES J. Mixed phase modeling in GlennICE with application to engine icing: AIAA-2010-7674[R]. Reston: AIAA, 2010. |
10 | TRONTIN P, BLANCHARD G, VILLEDIEU P. A comprehensive numerical model for mixed-phase and glaciated icing conditions: AIAA-2016-3742[R].Reston: AIAA, 2016. |
11 | 郭向东, 胡站伟, 丁亮, 等. 大型结冰风洞中冰晶热/力平衡特性数值研究[J]. 航空动力学报, 2022, 37(3): 478-491. |
GUO X D, HU Z W, DING L, et al. Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel[J]. Journal of Aerospace Power, 2022, 37(3): 478-491 (in Chinese). | |
12 | NORDE E, VAN DER WEIDE E T A, HOEIJMAKERS H W M. Eulerian method for ice crystal icing[J]. AIAA Journal, 2017, 56(1): 222-234. |
13 | NILAMDEEN S, HABASHI W G. Multiphase approach toward simulating ice crystal ingestion in jet engines[J]. Journal of Propulsion and Power, 2011, 27(5): 959-969. |
14 | IULIANO E, MONTREUIL E, NORDE E, et al. Modelling of non-spherical particle evolution for ice crystals simulation with an eulerian approach[C]∥SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures. Warrendale: SAE International, 2015. |
15 | VILLEDIEU P, TRONTIN P, CHAUVIN R. Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite: AIAA-2014-2199[R]. Reston: AIAA, 2014. |
16 | ZHANG L F, LIU Z X, ZHANG M H. Numerical simulation of ice accretion under mixed-phase conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(13): 2473-2483. |
17 | 任靖豪, 易贤, 王强, 等. 复杂构型水滴收集率的拉格朗日计算方法[J]. 航空动力学报, 2020, 35(12): 2553-2561. |
REN J H, YI X, WANG Q, et al. Lagrangian simulation method of droplet collection efficiency for complex configuration[J]. Journal of Aerospace Power, 2020, 35(12): 2553-2561 (in Chinese). | |
18 | H?LZER A, SOMMERFELD M. New simple correlation formula for the drag coefficient of non-spherical particles[J]. Powder Technology, 2008, 184(3): 361-365. |
19 | KALOS M H, WHITLOCK P A. Monte carlo methods[M]. Weinheim: Wiley-VCH Verlag GmbH, 1986. |
20 | HAMMERSLEY J M, HANDSCOMB D C. Short resumé of statistical terms [M]∥Monte Carlo Methods. Dordrecht: Springer Netherlands, 1964: 10-24. |
21 | TRONTIN P, VILLEDIEU P. A comprehensive accretion model for glaciated icing conditions[J]. International Journal of Multiphase Flow, 2018, 108: 105-123. |
22 | CURRIE T C, FULEKI D, MAHALLATI A. Experimental studies of mixed-phase sticking efficiency for ice crystal accretion in jet engines: AIAA-2014-3049[R].Reston: AIAA, 2014. |
/
〈 |
|
〉 |