考虑未知扰动的RLV再入鲁棒容错姿态控制
收稿日期: 2022-06-01
修回日期: 2022-07-11
录用日期: 2022-08-09
网络出版日期: 2022-08-17
Re-entry robust fault tolerant attitude control for RLVs considering unknown disturbances
Received date: 2022-06-01
Revised date: 2022-07-11
Accepted date: 2022-08-09
Online published: 2022-08-17
针对复杂再入环境下的可重复使用运载器姿态控制问题,考虑大气的未知干扰、气动参数建模的不确定性以及可能发生的执行器部分失效故障,基于增量反步法和径向基函数(RBF)神经网络设计了姿态角回路和角速度回路的控制器。 基于神经网络良好的未知逼近能力,采用RBF神经网络对增量反步法设计过程中的泰勒展开高阶项以及上述未知扰动和故障产生的影响进行逼近估计,并在控制律中进行补偿。经过仿真验证,所设计的控制系统能够在未知扰动影响下有效提高指令的跟踪精度,并且对飞行器的本体特性建模依赖较少,具有良好的鲁棒容错能力。
刘武 , 吴云燕 , 刘玮 , 田明明 , 黄天鹏 . 考虑未知扰动的RLV再入鲁棒容错姿态控制[J]. 航空学报, 2023 , 44(S1) : 727787 -727787 . DOI: 10.7527/S1000-6893.2022.27787
Aiming at the attitude control problem of reusable launch vehicle in complex re-entry environment, and considering the unknown disturbance of atmosphere, the uncertainty of aerodynamic parameter modeling and the possible partial faults of actuator, the controllers of attitude angle loop and angular velocity loop are designed based on incremental backstepping and Radial Basis Function (REF) neural network. Because the neural network has good unknown approximation ability, RBF neural network is used to estimate the high-order term of Taylor expansion and the influence of the above unknown disturbances in the incremental backstepping design process, and compensate them in the control law. The simulation results show that the designed control system can effectively improve the tracking accuracy of instructions under the influence of unknown disturbances, and has less dependence on the modeling of aircraft information, so it has good robust fault tolerance.
1 | LIU J J, SUN M W, CHEN Z Q, et al. Output feedback control for aircraft at high angle of attack based upon fixed-time extended state observer[J]. Aerospace Science and Technology, 2019, 95: 105468. |
2 | 林海兵, 都延丽, 刘武, 等. 基于FTDO的RLV再入段鲁棒容错姿态控制[J]. 电光与控制, 2020, 27(3): 46-51. |
LIN H B, DU Y L, LIU W, et al. Robust fault-tolerant attitude control for the RLV during reentry based on fixed-time disturbance observer[J]. Electronics Optics & Control, 2020, 27(3): 46-51 (in Chinese). | |
3 | DONG Q, ZONG Q, TIAN B L, et al. Adaptive disturbance observer-based finite-time continuous fault-tolerant control for reentry RLV[J]. International Journal of Robust and Nonlinear Control, 2017, 27(18): 4275-4295. |
4 | LIANG X H, WANG Q, HU C H, et al. Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults[J]. Aerospace Science and Technology, 2020, 107: 106314. |
5 | LI P, YU X, XIAO B. Adaptive quasi-optimal higher order sliding-mode control without gain overestimation[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 3881-3891. |
6 | ZHANG L, WEI C Z, WU R,et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159: 362-370. |
7 | 陈佳晔, 白瑜亮, 穆荣军, 等. 基于自适应滑模的重复使用运载器容错控制[J]. 中国惯性技术学报, 2019, 27(2): 255-259. |
CHEN J Y, BAI Y L, MU R J, et al. Fault-tolerant control of RLV based on adaptive sliding mode theory[J]. Journal of Chinese Inertial Technology, 2019, 27(2): 255-259 (in Chinese). | |
8 | ZHANG Y, LI A J, HUANG B, et al. Sliding-mode based adaptive fault tolerant control for re-entry reusable launch vehicle[C]∥ 2017 International Conference on Mechanical, System and Control Engineering. Piscataway: IEEE Press, 2017: 220-224. |
9 | ZHANG R D, TAO J L. A nonlinear fuzzy neural network modeling approach using an improved genetic algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5882-5892. |
10 | XIA R S, CHEN M, WU Q X,et al. Neural network based integral sliding mode optimal flight control of near space hypersonic vehicle[J]. Neurocomputing, 2020, 379: 41-52. |
11 | 窦立谦, 毛奇, 苏沛华. 基于自适应模糊H∞控制的可重复使用运载器再入姿态控制[J]. 控制与决策, 2018, 33(7): 1181-1189. |
DOU L Q, MAO Q, SU P H. Adaptive fuzzy H∞ attitude control design for reentry RLV[J]. Control and Decision, 2018, 33(7): 1181-1189 (in Chinese). | |
12 | MAO Q, DOU L Q, ZONG Q, et al. Attitude controller design for reusable launch vehicles during reentry phase via compound adaptive fuzzy H-infinity control[J]. Aerospace Science and Technology, 2018, 72: 36-48. |
13 | XUE Q, DUAN H B. Robust attitude control for reusable launch vehicles based on fractional calculus and pigeon-inspired optimization[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1): 89-97. |
14 | 吴雨珊, 江驹, 甄子洋, 等. 基于回馈递推的可变翼高超声速飞行器智能非线性控制[J]. 哈尔滨工程大学学报, 2016, 37(7): 963-968. |
WU Y S, JIANG J, ZHEN Z Y, et al. Intelligent nonlinear control for the hypersonic morphing vehicle based on the backstepping method[J]. Journal of Harbin Engineering University, 2016, 37(7): 963-968 (in Chinese). | |
15 | 徐文萤, 江驹, 甄子洋, 等. 基于Back-Stepping鲁棒自适应动态面的近空间飞行器控制[J]. 电光与控制, 2018, 25(11): 15-20. |
XU W Y, JIANG J, ZHEN Z Y, et al. Near space vehicle control based on Back-Stepping robust adaptive dynamic surface[J]. Electronics Optics & Control, 2018, 25(11): 15-20 (in Chinese). | |
16 | PAUL A B, VAN KAMPEN E J, CHU Q P. Incremental backstepping for robust nonlinear flight control[C]∥Proceeding of EuroGNC 2013, 2nd CEAS Specialist Conference on Guidance, Navigation & Control. Brussels: CEAS, 2013: 1444-1463. |
17 | WANG X R, VAN KAMPEN E J. Incremental backstepping sliding mode fault-tolerant flight control: AIAA-2019-0110[R]. Reston: AIAA, 2019. |
18 | LU P, VAN KAMPEN E J. Active fault-tolerant control system using incremental backstepping approach AIAA-2015-1312[R]. Reston: AIAA, 2015. |
19 | 刘武, 都延丽, 林海兵, 等. 基于改进增量反演法的RLV鲁棒容错控制[J]. 电光与控制, 2021, 28(6): 11-15. |
LIU W, DU Y L, LIN H B, et al. Robust fault-tolerant control of RLVs based on improved incremental backstepping[J]. Electronics Optics & Control, 2021, 28(6): 11-15 (in Chinese). | |
20 | MOOIJ E, MEASE K, BENITO J. Robust re-entry guidance and control system design and analysis: AIAA-2007-6779[R]. Reston: AIAA, 2007. |
21 | 张鹏. 可重复使用运载器再入预测校正制导与控制系统设计[D]. 南京: 南京航空航天大学, 2018: 17-21. |
ZHANG P. Research on predictive correction entry guidance and control system for reusable launch vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 17-21 (in Chinese). | |
22 | PARK J, SANDBERG I W. Universal approximation using radial-basis-function networks[J]. Neural Computation, 1991, 3(2): 246-257. |
23 | 冯福沁, 张胜修, 曹立佳, 等. 基于RBF神经网络的自适应反演大机动飞行控制器设计[J]. 电光与控制, 2013, 20(5): 63-68. |
FENG F Q, ZHANG S X, CAO L J, et al. Design of adaptive backstepping controller for high maneuvering flight based on RBF neural network[J]. Electronics Optics & Control, 2013, 20(5): 63-68 (in Chinese). |
/
〈 |
|
〉 |