变形翼可调泊松比柔性蒙皮力学特性分析
收稿日期: 2022-07-01
修回日期: 2022-07-14
录用日期: 2022-08-02
网络出版日期: 2022-08-17
基金资助
国家自然科学基金(52192631);河北省高等学校科学技术研究项目(QN2023206);陕西省自然科学基金青年基金(2022JQ-316)
Analysis of mechanical characteristics of flexible skin with tunable Poisson's ratio for morphing wing
Received date: 2022-07-01
Revised date: 2022-07-14
Accepted date: 2022-08-02
Online published: 2022-08-17
Supported by
National Natural Science Foundation of China(52192631);Science and Technology Project of Hebei Education Department(QN2023206);Shaanxi Province Natural Science Foundation(2022JQ-316)
空天飞行器变形翼在实现翼展弯曲、扭转及后掠变形时对柔性蒙皮提出面内大变形和面外高承载能力的要求,提出一种具有可调泊松比特性的混合超结构蒙皮结构,由内凹六边形与四角星形胞元构成内部混合超结构,并在两侧粘接柔性表层构成。基于梁理论建立了混合超结构胞元x、y方向相对弹性模量和xy平面泊松比的理论模型,且理论与仿真结果误差不大于10%,验证了理论模型的准确性。研究了胞元几何参数对相对弹性模量和xy平面泊松比的影响,发现胞壁厚度对两者影响最大,其次是水平胞壁长度,四角星形内角对两者影响最小。对超结构面内变形能力进行了参数研究,并对4种不同超结构的比刚度进行了分析,结果表明新型混合超结构在一定胞元内角范围内的比刚度更具优势,研究结果可为高速飞行器变形翼蒙皮的应用提供理论基础。
姜松成 , 杨慧 , 王岩 , 肖洪 , 刘永斌 , 李传扬 . 变形翼可调泊松比柔性蒙皮力学特性分析[J]. 航空学报, 2023 , 44(13) : 227748 -227748 . DOI: 10.7527/S1000-6893.2022.27748
To satisfy the requirements of in-plane large deformation and out-of-plane high bearing capacity for flexible skin imposed by the morphing wing of aerospace vehicle in realizing continuous variable span-wise bend, span-wise torsion, and sweep, we propose a hybrid metastructure skin structure with tunable Poisson’s ratio. This structure consists of a hybrid metastructure composed of a concave hexagon and a quadrangular star cell, with a flexible surface bonded on both sides. Based on the theory of beam buckling, the theoretical model of the relative elastic modulus in x and y directions and Poisson’s ratio in the xy plane of the hybrid metastructure cell is established. The accuracy of the theoretical model is verified by the relative errors of the theoretical and simulation results which is not greater than 10%. The effects of cell geometry parameters on the relative elastic modulus and Poisson’s ratio in the xy plane are studied. The results show that the thickness of the cell wall exhibits the largest effect on both, followed by the length of the horizontal cell wall, while the inner angle of the quadrangular star has the least effect on both. The in-plane deformation capacity of the metastructure is studied. The comparative analysis of the specific stiffness of four different metastructures shows that the new hybrid metastructure has more advantages in the specific stiffness within a certain range of cell angles. The results provide a theoretical basis for the application of morphing wing skin of high-speed aircraft.
Key words: aerospace vehicle; morphing wing; flexible skin; metastructure; Poisson's ratio
1 | MAJID T, JO B W. Status and challenges on design and implementation of camber morphing mechanisms[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-14. |
2 | YOU H, KIM S, JOE W Y, et al. New concept for aircraft morphing wing skin: Design, modeling, and analysis[J]. AIAA Journal, 2019, 57(5): 1786-1792. |
3 | YU J R, MA J Y. Design and shear analysis of an angled morphing wing skin module[J]. Applied Sciences, 2022, 12(6): 3092. |
4 | 尹维龙, 石庆华. 变体飞行器蒙皮材料与结构研究综述[J]. 航空制造技术, 2017, 60(17): 24-29. |
YIN W L, SHI Q H. Review of material and structure for morphing aircraft skin[J]. Aeronautical Manufacturing Technology, 2017, 60(17): 24-29 (in Chinese). | |
5 | ZHENG J L, LI R F, ZHONG W H, et al. A bio-OCLC structure equating to a movable unit of a lattice cellular core for hybrid in-plane morphing applications[J]. Composite Structures, 2020, 235: 111762. |
6 | WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering, 2019, 166: 731-741. |
7 | 王佳铭, 李志刚, 梁方正, 等. 面向直升机抗坠毁的新型夹心八边形蜂窝设计、仿真和理论研究[J]. 航空学报, 2022, 43(5): 225244. |
WANG J M, LI Z G, LIANG F Z, et al. Design, simulation and theoretical study on novel cored octagon honeycomb for helicopter crashworthiness[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225244 (in Chinese). | |
8 | BUBERT E A, WOODS B K S, LEE K, et al. Design and fabrication of a passive 1d morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1699-1717. |
9 | CHEN J J, SHEN X, LI J F. Zero Poisson’s ratio flexible skin for potential two-dimensional wing morphing[J]. Aerospace Science and Technology, 2015, 45: 228-241. |
10 | HARKATI E, DAOUDI N, BEZAZI A, et al. In-plane elasticity of a multi re-entrant auxetic honeycomb[J]. Composite Structures, 2017, 180: 130-139. |
11 | ZHANG X L, TIAN R L, ZHANG Z W, et al. In-plane elasticity of a novel vertical strut combined re-entrant honeycomb structure with negative Poisson’s ratio[J]. Thin-Walled Structures, 2021, 163: 107634. |
12 | LIU W D, ZHU H, ZHOU S Q, et al. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing[J]. Chinese Journal of Aeronautics, 2013, 26(4): 935-942. |
13 | JHA A, DAYYANI I. Shape optimisation and buckling analysis of large strain zero Poisson’s ratio fish-cells metamaterial for morphing structures[J]. Composite Structures, 2021, 268: 113995. |
14 | 程文杰, 周丽, 张平, 等. 零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用[J]. 航空学报, 2015, 36(2): 680-690. |
CHENG W J, ZHOU L, ZHANG P, et al. Design and analysis of a zero Poisson’s ratio mixed cruciform honeycomb and its application in flexible skin[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 680-690 (in Chinese). | |
15 | ALSAIDI B, JOE W Y, AKBAR M. Computational analysis of 3D lattice structures for skin in real-scale camber morphing aircraft[J]. Aerospace, 2019, 6(7): 79. |
16 | YOU H, KIM S, YUN G J. Design criteria for variable camber compliant wing aircraft morphing wing skin[J]. AIAA Journal, 2019, 58(2): 867-878. |
17 | 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14. |
YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson’s ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1-14 (in Chinese). | |
18 | 陈以金. 变体飞行器柔性蒙皮及支撑结构性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 20-36. |
CHEN Y J. Study on flexible skin and supporting substructure of morphing aircraft[D]. Harbin: Harbin Institute of Technology, 2014: 20-36 (in Chinese). | |
19 | OLYMPIO K R, GANDHI F. Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17): 1737-1753. |
20 | CHEN Y, FU M H. Design and modeling of a combined embedded enhanced honeycomb with tunable mechanical properties[J]. Applied Composite Materials, 2018, 25(5): 1041-1055. |
21 | GONG X B, HUANG J, SCARPA F, et al. Zero Poisson’s ratio cellular structure for two-dimensional morphing applications[J]. Composite Structures, 2015, 134: 384-392. |
/
〈 |
|
〉 |