一种快速自动挖掘航空发动机工作模式的新方法
收稿日期: 2022-06-21
修回日期: 2022-07-11
录用日期: 2022-08-03
网络出版日期: 2022-08-17
基金资助
国家科技重大专项(J2019-I-0010-0010);中央高校基本科研业务费专项资金(NS2022027)
New method for automatic and rapid mining of aero-engine operating patterns
Received date: 2022-06-21
Revised date: 2022-07-11
Accepted date: 2022-08-03
Online published: 2022-08-17
Supported by
National Science and Technology Major Project(J2019-I-0010-0010);Fundamental Research Funds for the Central Universities(NS2022027)
为了处理航空发动机传感器所采集的多维时序数据,过去的方法常聚焦于单个样本点的识别,其提出的模型中往往含有大量待调参数并且单变量的挖掘方式会忽视状态参数的延时效应对工作模式挖掘的影响。另外,这些方法对大批量处理含过渡态模式数据的情况考虑欠佳。因此,提出一种能快速自动挖掘多维时序数据中隐含工作模式的新方法,即AutoMiner。该方法通过构造模型的编码代价来求解使编码代价最小的断点组合。在构造编码代价过程中利用标记传播的方法来识别每个片段的工作模式,这一方法生成的软标记成功解决了对过渡态模式的识别问题。本文在某型发动机采集的传感器数据上开展了多组实验,同时进行了可视化的展示,实验证明AutoMiner方法在时序分割和模式挖掘方面的评估指标均优于对比算法。另外,AutoMiner方法还支持并行化计算并且能在更复杂的工作模式挖掘场景中具有良好的可迁移性。
彭沛 , 赵永平 , 王雨玮 . 一种快速自动挖掘航空发动机工作模式的新方法[J]. 航空学报, 2023 , 44(11) : 327659 -327659 . DOI: 10.7527/S1000-6893.2022.27659
To process multi-dimensional time-series data collected from aero-engine sensors, previous methods tend to focus on the identification of a single sample point and the proposed models often contain a large number of parameters to be tuned, while the single-variable mining approach often ignores the influence of the delayed effect of the state parameters on the identification of working models. In addition, these methods poorly consider the case of large-scale processing of data containing transition state patterns. This paper proposes a new method, named AutoMiner, that can quickly and automatically mine the implied working patterns in multi-dimensional time-series data. The method solves for the combination of breakpoints, minimizing the encoding cost by constructing the encoding cost of the model. In the process of the encoding cost construction, the method of marker propagation is adopted to identify the working mode of each segment, generating soft labels to successfully solve the problem of identifying the transition state mode. Multiple experiments are conducted on the sensor data collected from an engine and presented visually. It is demonstrated that the AutoMiner method is superior to the comparison algorithms in terms of evaluation metrics for both temporal segmentation and pattern mining. In addition, the AutoMiner method supports parallelized computation with good transferability in more complex working pattern mining scenarios.
1 | 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ:地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574. |
CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625574 (in Chinese). | |
2 | 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报, 2020, 41(12): 324183. |
XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324183 (in Chinese). | |
3 | 冯蕴雯, 潘维煌, 刘佳奇, 等. 基于机器学习的飞机动力装置运行可靠性[J]. 航空学报, 2021, 42(4): 524732. |
FENG Y W, PAN W H, LIU J Q, et al. Operational reliability of aircraft power plant based on machine learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524732 (in Chinese). | |
4 | 王志刚, 王业光, 杨宁, 等. 基于LSTM的飞行数据挖掘模型构建方法[J]. 航空学报, 2021, 42(8): 525800. |
WANG Z G, WANG Y G, YANG N, et al. Construction method of flight data mining model based on LSTM[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525800 (in Chinese). | |
5 | 王奕惟, 莫李平, 王奕首, 等. 基于全航段QAR数据和卷积神经网络的航空发动机状态辨识[J]. 航空动力学报, 2021, 36(7): 1556-1563. |
WANG Y W, MO L P, WANG Y S, et al. Aero-engine status identification based on full-segment QAR data and convolutional neural network[J]. Journal of Aerospace Power, 2021, 36(7): 1556-1563 (in Chinese). | |
6 | 梁睿君, 冉文丰, 余传粮, 等. 基于CWT-CNN的齿轮箱运行故障状态识别[J]. 航空动力学报, 2021, 36(12): 2465-2473. |
LIANG R J, RAN W F, YU C L, et al. Recognition of gearbox operation fault state based on CWT-CNN[J]. Journal of Aerospace Power, 2021, 36(12): 2465-2473 (in Chinese). | |
7 | BARDET J, CYNTHIA F, LACAILLE J, et al. Unequal time series clustering applied on flight data[C]∥12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), 2017. |
8 | FAURE C, BARDET J M, OLTEANU M, et al. Comparison of three algorithms for parametric change-point detection[C]∥European Symposium on Neural Networks (ESANN), 2016: 2-7. |
9 | KEHAGIAS A, NIDELKOU E, PETRIDIS V. A dynamic programming segmentation procedure for hydrological and environmental time series[J]. Stochastic Environmental Research and Risk Assessment, 2006, 20(1): 77-94. |
10 | WANG P, WANG H X, WANG W. Finding semantics in time series[C]∥Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2011: 385-396. |
11 | HALLAC D, NYSTRUP P, BOYD S. Greedy Gaussian segmentation of multivariate time series[J]. Advances in Data Analysis and Classification, 2019, 13(3): 727-751. |
12 | MATSUBARA Y, SAKURAI Y, FALOUTSOS C. AutoPlait: Automatic mining of co-evolving time sequences[C]∥Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 193-204. |
13 | TAKAHASHI T, HOOI B, FALOUTSOS C. AutoCyclone: Automatic mining of cyclic online activities with robust tensor factorization[C]∥Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 213-221. |
14 | WANG J D, WANG F, ZHANG C S, et al. Linear neighborhood propagation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1600-1615. |
15 | RISSANEN J. A universal prior for integers and estimation by minimum description length[J]. The Annals of Statistics, 1983, 11(2): 416-431. |
16 | KIM H, ADELI H. Discrete cost optimization of composite floors using a floating-point genetic algorithm[J]. Engineering Optimization, 2001, 33(4): 485-501. |
17 | WITTEN D M, TIBSHIRANI R. Covariance-regularized regression and classification for high-dimensional problems[J]. Journal of the Royal Statistical Society Series B, Statistical Methodology, 2009, 71(3): 615-636. |
18 | ZHAO M B, ZHANG Z, CHOW T W S, et al. Soft label based linear discriminant analysis for image recognition and retrieval[J]. Computer Vision and Image Understanding, 2014, 121: 86-99. |
19 | KEOGH E, CHU S, HART D, et al. Segmenting time series: A survey and novel approach[M]∥LAST M, KANDEL A, BUNKE H. Data Mining in Time Series Databases. Singapore: World Scientific, 2004: 1-21. |
20 | LEE C H, LIN C R, CHEN M S. Sliding-window filtering: an efficient algorithm for incremental mining[C]∥Proceedings of the Tenth International Conference on Information and Knowledge Management. New York: ACM, 2001: 263-270. |
21 | JERONYMO D C, BORGES Y C C, DOS SANTOS COELHO L. Image forgery detection by semi-automatic wavelet soft-thresholding with error level analysis[J]. Expert Systems with Applications, 2017, 85: 348-356. |
22 | GARREAU D, ARLOT S. Consistent change-point detection with kernels[J]. Electronic Journal of Statistics, 2018, 12(2): 4440-4486. |
23 | LIN J F S, KARG M, KULI? D N. Movement primitive segmentation for human motion modeling: A framework for analysis[J]. IEEE Transactions on Human-Machine Systems, 2016, 46(3): 325-339. |
24 | GHARGHABI S, YEH C C M, DING Y F, et al. Domain agnostic online semantic segmentation for multi-dimensional time series[J]. Data Mining and Knowledge Discovery, 2019, 33(1): 96-130. |
25 | VAN D M L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |
/
〈 |
|
〉 |