流体力学与飞行力学

孤立翼尖涡模态演化规律的实验研究

  • 吴奕铭 ,
  • 邱思逸 ,
  • 向阳 ,
  • 刘洪
展开
  • 上海交通大学 航空航天学院,上海 200240
.E-mail: xiangyang@sjtu.edu.cn

收稿日期: 2022-06-21

  修回日期: 2022-07-05

  录用日期: 2022-08-08

  网络出版日期: 2022-08-17

基金资助

国家自然科学基金(9195230);中国博士后科学基金(2018M642007)

Mode evolution characteristics of isolated wing tip vortex: Experimental study

  • Yiming WU ,
  • Siyi QIU ,
  • Yang XIANG ,
  • Hong LIU
Expand
  • School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

Received date: 2022-06-21

  Revised date: 2022-07-05

  Accepted date: 2022-08-08

  Online published: 2022-08-17

Supported by

National Natural Science Foundation of China(9195230);China Postdoctoral Science Foundation(2018M642007)

摘要

采用主动流动控制方法加快翼尖涡衰减破碎是提升机场起降频率、保证飞机飞行安全的最具潜力的技术之一。由于翼尖涡不稳定性认识的不足,已有的主动控制方法常常不能获得最优的控制效果。为了揭示翼尖涡不稳定模态的演化规律,采用体视粒子图像测速技术和线性稳定性分析方法对孤立翼尖涡的不稳定模态演化特征进行研究,结果表明:孤立翼尖涡的扰动模态可以根据其在特征值谱的位置分成主扰动模态、P族次级扰动模态、A族次级扰动模态、S族次级扰动模态4种;其中主扰动模态和P族扰动模态具有两瓣式的结构特征,决定了翼尖涡摇摆的各向异性特征,A族次级扰动模态具有流向速度波动大于横向速度波动的特征,S族次级扰动模态则具有更高的切向波数和作用范围。不同族扰动模态的流向演化规律不同,翼尖涡的主扰动模态和P族扰动模态沿流向发生旋转,并且扰动幅值随着流向逐渐放大,A族次级扰动模态随着流向发展会逐渐增大扰动幅值;S族次级扰动模态随着流向会逐渐覆盖住整个涡核,这种穿透涡核的扰动会随着流向进一步放大。描述了不同翼尖涡扰动模态的扰动能量随流向的演化规律,发现S族次级扰动模态有更高的切向波数特征,也同时具有较高的扰动能量增长,意味着利用S族次级扰动模态指导翼尖涡主动控制是最具潜力的一种策略。

本文引用格式

吴奕铭 , 邱思逸 , 向阳 , 刘洪 . 孤立翼尖涡模态演化规律的实验研究[J]. 航空学报, 2023 , 44(11) : 127658 -127658 . DOI: 10.7527/S1000-6893.2022.27658

Abstract

Using the active flow control method to accelerate the attenuation and fragmentation of the wing tip vortex is one of the most potential technologies to improve the take-off and landing frequency of the airport and ensure the flight safety of aircraft. Due to the lack of understanding of wingtip vortex instability, the existing active control methods often cannot achieve the optimal control effect. To reveal the evolution law of the unstable modes of the wingtip vortex, the evolution characteristics of the unstable modes of the isolated wingtip vortex are studied using the SPIV technique and the linear stability analysis method. The results show that: the perturbation modes of the isolated wingtip vortex can be divided into four types according to its position in the eigenvalue spectrum: main perturbation mode, P secondary perturbation mode, A secondary perturbation mode and S secondary perturbation mode. Among them, the main perturbation mode and P-group perturbation mode have two-lobe structural characteristics, which determine the anisotropic characteristics of wingtip vortex wandering. The secondary perturbation mode of group A has the characteristic that the fluctuation of flow velocity is larger than that of transverse velocity, while the secondary perturbation mode of group S has a higher tangential wavenumber and range of action. The flow direction evolution law of different perturbation modes is different. The main perturbation mode and P group perturbation mode of the wing tip vortex rotate along the flow direction, with the perturbation amplitude gradually magnified with the flow direction. Group A secondary perturbation mode will slowly increase the perturbation amplitude with the development of the flow direction. Group S secondary perturbation mode will gradually cover the whole vortex core with the flow direction, and the perturbation passing through the vortex core will be further magnified with the flow direction. The evolution law of perturbation energy of different wing tip vortex perturbation modes with flow direction is described. S secondary perturbation modes have higher tangential wavenumber characteristics and meanwhile higher perturbation energy growth, meaning that using S-group secondary perturbation modes to guide the active control of the wing tip vortex is the most potential strategy.

参考文献

1 GERZ T, HOLZ?PFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences200238(3): 181-208.
2 GURSUL I, WANG Z J. Flow control of tip/edge vortices[J]. AIAA Journal201856(5): 1731-1749.
3 EDSTRAND A M, SUN Y Y, SCHMID P J, et al. Active attenuation of a trailing vortex inspired by a parabolized stability analysis[J]. Journal of Fluid Mechanics2018855: R2.
4 LEWEKE T, LE DIZèS S, WILLIAMSON C H K. Dynamics and instabilities of vortex pairs[J]. Annual Review of Fluid Mechanics201648: 507-541.
5 CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal19708(12): 2172-2179.
6 KERSWELL R R. Elliptical instability[J]. Annual Review of Fluid Mechanics200234: 83-113.
7 BAKER G R, BARKER S J, BOFAH K K, et al. Laser anemometer measurements of trailing vortices in water[J]. Journal of Fluid Mechanics197465(2): 325-336.
8 DEVENPORT W J, RIFE M C, LIAPIS S I, et al. Corrigenda[J]. Journal of Fluid Mechanics1996326: 437.
9 DEEM E, EDSTRAND A, REGER R, et al. Deconvolution correction for wandering in wingtip vortex flowfield data[J]. Journal of Fluid Science and Technology20138(2): 219-232.
10 BAILEY S C C, TAVOULARIS S. Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence[J]. Journal of Fluid Mechanics2008601: 281-315.
11 薛栋, 潘翀, 李广超. 基于流动显示的翼尖涡不稳定频率测量[J]. 北京航空航天大学学报201642(4): 837-843.
  XUE D, PAN C, LI G C. Frequency measurement of wing-tip vortex instability by flow visualization[J]. Journal of Beijing University of Aeronautics and Astronautics201642(4): 837-843 (in Chinese).
12 EDSTRAND A M, DAVIS T B, SCHMID P J, et al. On the mechanism of trailing vortex wandering[J]. Journal of Fluid Mechanics2016801: R1.
13 CHENG Z P, QIU S Y, XIANG Y, et al. Quantitative features of wingtip vortex wandering based on the linear stability analysis[J]. AIAA Journal201957(7): 2694-2709.
14 LESSEN M, SINGH P J, PAILLET F. The stability of a trailing line vortex. Part 1. Inviscid theory[J]. Journal of Fluid Mechanics197463(4): 753-763.
15 KHORRAMI M R. On the viscous modes of instability of a trailing line vortex[J]. Journal of Fluid Mechanics1991225: 197-212.
16 LEIBOVICH S, STEWARTSON K. A sufficient condition for the instability of columnar vortices[J]. Journal of Fluid Mechanics1983126: 335-356.
17 GALLAIRE F, CHOMAZ J M. Mode selection in swirling jet experiments: a linear stability analysis[J]. Journal of Fluid Mechanics2003494: 223-253.
18 FABRE D, SIPP D, JACQUIN L. Kelvin waves and the singular modes of the Lamb-Oseen vortex[J]. Journal of Fluid Mechanics2006551: 235.
19 QIU S Y, CHENG Z P, XU H, et al. On the characteristics and mechanism of perturbation modes with asymptotic growth in trailing vortices[J]. Journal of Fluid Mechanics2021918: A41.
20 XIANG Y, CHENG Z P, WU Y M, et al. Scaling analysis on the dynamic and instability characteristics of isolated wingtip vortex[J]. AIAA Journal202159(12): 5198-5210.
21 程泽鹏, 邱思逸, 向阳, 等. 基于全局线性稳定性分析的翼尖双涡不稳定特征演化机理[J]. 航空学报202041(9): 123751.
  CHENG Z P, QIU S Y, XIANG Y, et al. Evolution mechanism of instability features of wingtip vortex pairs based on bi-global linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica202041(9): 123751 (in Chinese).
22 CHENG Z P, WU Y M, XIANG Y, et al. Benefits comparison of vortex instability and aerodynamic performance from different split winglet configurations[J]. Aerospace Science and Technology2021119: 107219.
23 CHENG Z P, QIU S Y, XIANG Y, et al. Instability characteristics of a co-rotating wingtip vortex pair based on bi-global linear stability analysis[J]. Chinese Journal of Aeronautics202134(5): 1-16.
24 邱思逸, 程泽鹏, 向阳, 等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报201940(8): 122712.
  QIU S Y, CHENG Z P, XIANG Y, et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica201940(8): 122712 (in Chinese).
25 GARCíA-ORTIZ J H, BLANCO-RODRíGUEZ F J, PARRAS L, et al. Experimental observations of the effects of spanwise blowing on the wingtip vortex evolution at low Reynolds numbers[J]. European Journal of Mechanics-B/Fluids202080: 133-145.
26 RAFFEL M, WILLERT C E, KOMPENHANS J. Particle image velocimetry: A practical guide[M]. New York: Springer, 1998.
27 EDSTRAND A M, SCHMID P J, TAIRA K, et al. A parallel stability analysis of a trailing vortexwake[J]. Journal of Fluid Mechanics2018837: 858-895.
28 MACK L M. A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer[J]. Journal of Fluid Mechanics197673(3): 497-520.
29 张宇轩, 李伟鹏, 王福新. 流动线性稳定性分析中切比雪夫谱配置法参数敏感性[J]. 上海交通大学学报201650(8): 1246-1254, 1263.
  ZHANG Y X, LI W P, WANG F X. A parameter sensitivity study of Chebyshev collocation method in hydrodynamic linear stability analysis[J]. Journal of Shanghai Jiao Tong University201650(8): 1246-1254, 1263 (in Chinese).
30 SCHMID P J. Nonmodal stability theory[J]. Annual Review of Fluid Mechanics200739: 129-162.
31 MAO X R, SHERWIN S. Continuous spectra of the batchelor vortex[J]. Journal of Fluid Mechanics2011681: 1-23.
文章导航

/