基于Box-Cox变换与随机系数回归模型的非线性退化设备剩余寿命预测方法
收稿日期: 2022-06-22
修回日期: 2022-07-14
录用日期: 2022-07-31
网络出版日期: 2022-08-08
基金资助
国家自然科学基金(61922089)
Remaining useful life prediction method for nonlinear degrading equipment based on Box-Cox transformation and random coefficient regression model
Received date: 2022-06-22
Revised date: 2022-07-14
Accepted date: 2022-07-31
Online published: 2022-08-08
Supported by
National Natural Science Foundation of China(61922089)
准确预测退化设备的剩余寿命可以为设备维护管理提供重要信息支撑,进而避免设备运行中发生计划外失效、减少设备运行维护成本。针对工程实际设备广泛存在的非线性退化现象,提出了基于Box-Cox变换与随机系数回归模型的非线性退化设备剩余寿命预测方法。首先,采用Box-Cox变换对非线性退化数据进行线性化处理,在此基础上通过随机系数回归模型构建退化模型,并运用Bayesian理论与蒙特卡洛-期望最大化算法在线更新模型参数;然后,基于随机系数回归模型的特性,推导出剩余寿命的分布函数以及其点估计值;最后,通过数值仿真和锂电池实际退化数据验证所提方法的有效性。
关键词: 剩余寿命; Box-Cox变换; 随机系数回归模型; 非线性退化数据; 蒙特卡洛-期望最大化算法
杨保奎 , 张建勋 , 李慧琴 , 司小胜 . 基于Box-Cox变换与随机系数回归模型的非线性退化设备剩余寿命预测方法[J]. 航空学报, 2023 , 44(11) : 227660 -227660 . DOI: 10.7527/S1000-6893.2022.27660
Accurate prediction of Remaining Useful Life (RUL) of degraded equipment can provide important information support for equipment maintenance management, thereby avoiding unplanned failure and reducing the operating cost of equipment. Aiming at the nonlinear degradation phenomenon widely existing in practical engineering, this paper proposes a RUL prediction method of nonlinear equipment based on the Box-Cox transformation and random coefficient regression model. The Box-Cox transformation is used to linearize the nonlinear degradation data, the degradation model is then constructed through the random coefficient regression model based on the transformed degradation data, and the model parameters are updated online by the Bayesian theory and Monte Carlo expected maximization algorithm. Based on the characteristics of the random coefficient regression model, the distribution function of RUL and its point estimation value are derived. Finally, the effectiveness of the proposed method is verified by numerical simulation and actual degradation data of a lithium battery.
1 | ZHANG K, ZHAO P, SUN C F, et al. Remaining useful life prediction of aircraft lithium-ion batteries based on F-distribution particle filter and kernel smoothing algorithm[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1517-1531. |
2 | PANG Z N, SI X S, HU C H, et al. A Bayesian inference for remaining useful life estimation by fusing accelerated degradation data and condition monitoring data[J]. Reliability Engineering & System Safety, 2021, 208: 107341. |
3 | 吕克洪, 程先哲, 李华康, 等. 电子设备故障预测与健康管理技术发展新动态[J]. 航空学报, 2019, 40(11): 023285. |
LYU K H, CHENG X Z, LI H K, et al. New developments of prognostic and health management technology for electronic equipment[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 023285 (in Chinese). | |
4 | 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574-625574. |
CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625574-625574 (in Chinese). | |
5 | SI X S, LI T M, ZHANG Q. A general stochastic degradation modeling approach for prognostics of degrading systems with surviving and uncertain measurements[J]. IEEE Transactions on Reliability, 2019, 68(3): 1080-1100. |
6 | ZHANG J X, DU D B, SI X S, et al. Joint optimization of preventive maintenance and inventory management for standby systems with hybrid-deteriorating spare parts[J]. Reliability Engineering & System Safety, 2021, 214: 107686. |
7 | LU C J, MEEKER W O. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2): 161-174. |
8 | ELWANY A, GEBRAEEL N. Real-time estimation of mean remaining life using sensor-based degradation models[J]. Journal of Manufacturing Science and Engineering, 2009, 131(5): 611-623. |
9 | GEBRAEEL N. Prognostics-based identification of the top-k units in a fleet[J]. IEEE Transactions on Automation Science and Engineering, 2010, 7(1): 37-48. |
10 | WANG W. A model to determine the optimal critical level and the monitoring intervals in condition-based maintenance[J]. International Journal of Production Research, 2000, 38(6): 1425-1436. |
11 | FANG X L, ZHOU R S, GEBRAEEL N. An adaptive functional regression-based prognostic model for applications with missing data[J]. Reliability Engineering & System Safety, 2015, 133: 266-274. |
12 | YAN M M, XIE L Y, MUHAMMAD I, et al. An effective method for remaining useful life estimation of bearings with elbow point detection and adaptive regression models[J]. ISA Transactions, 2022, 128: 290-300. |
13 | 万昌豪, 刘志国, 唐圣金, 等. 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551. |
WAN C H, LIU Z G, TANG S J, et al. Remaining useful life prediction method based on random coefficient regression model with imperfect prior information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2542-2551 (in Chinese). | |
14 | TANG D Y, SHENG W B, YU J S. Dynamic condition-based maintenance policy for degrading systems described by a random-coefficient autoregressive model: A comparative study[J]. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2018, 20(4): 590-601. |
15 | AHSAN S, LEMMA T A. Remaining useful life prediction of gas turbine engine using autoregressive model[C]∥UTP-UMP Symposium on Energy Systems 2017 (SES 2017). Paris: EDP Sciences, 2017. |
16 | ZHANG N, YU C J, XIE F S. The time-scaling t-ransformation technique for optimal control problems with time-varying time-delay switched systems[J]. Journal of the Operations Research Society of China, 2020, 8: 581-600. |
17 | YANG Z L, WANG T, DUAN Z F, et al. Reducing forecast errors by logarithmic transformations for complex time series[C]∥2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). Piscataway: IEEE Press, 2012: 2761-2764. |
18 | ZHOU S R, TANG Y C, XU A C. A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio[J]. Reliability Engineering & System Safety, 2021, 216: 107895. |
19 | YU W N, TU W B, KIM I Y, et al. A nonlinear-drift-driven Wiener process model for remaining useful life estimation considering three sources of variability[J]. Reliability Engineering & System Safety, 2021, 212: 107631. |
20 | ZHANG H, MO Z L, WANG J Y, et al. Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Reliability, 2020, 69(2): 768-780. |
21 | XI X P, ZHOU D H, CHEN M Y, et al. Remaining useful life prediction for fractional degradation processes under varying modes[J]. The Canadian Journal of Chemical Engineering, 2020, 98(6): 1351-1364. |
22 | SHAHKAR S, KHORASANI K. A multidimensional Bayesian methodology for diagnosis, prognosis, and health monitoring of electrohydraulic servo valves[J]. IEEE Transactions on Control Systems Technology, 2022, 30(3): 931-943. |
23 | TIAN Y Z, WANG L Y, TANG M L, et al. Likelihood-based quantile mixed effects models for longitudinal data with multiple features via MCEM algorithm[J]. Communications in Statistics - Simulation and Computation, 2020, 49(2): 317-334. |
24 | BOX G E P, COX D R. An analysis of transformations[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1964, 26(2): 211-243. |
25 | YANG Y M, ZHU H Y. A study of non-normal process capability analysis based on Box-Cox transformation[C]∥2018 3rd International Conference on Computational Intelligence and Applications (ICCIA). Piscataway: IEEE Press, 2018: 240-243. |
26 | GEBRAEEL N Z, LAWLEY M A, LI R, et al. Residual-life distributions from component degradation signals: A Bayesian approach[J]. IIE Transactions, 2005, 37(6): 543-557. |
27 | 李天梅, 司小胜, 张建勋. 多源传感监测线性退化设备数模联动的剩余寿命预测方法[J]. 航空学报, 2023, 44(8):227190. |
LI T M, SI X S, ZHANG J X. Data-model interactive remaining useful life prediction method for multi-sensor monitored linear stochastic degrading devices[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 227190 (in Chinese). | |
28 | WU Y, LI W, WANG Y R, et al. Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter[J]. IEEE Access, 2019, 7: 54843-54854. |
29 | XIE G, LI X, ZHANG C L, et al. Data-driven approach for the prediction of remaining useful life[C]∥2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE). Piscataway: IEEE Press, 2018: 150-155. |
30 | 李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[J]. 自动化学报, 2022, 48(9): 2119-2141. |
LI T M, SI X S, LIU X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica, 2022, 48(9): 2119-2141 (in Chinese). | |
31 | 蔡喜洋, 乔都助, 孙烈武, 等. 锂离子电池储能电站火灾事故处置研究[J]. 化工安全与环境, 2022, 35(7): 10-13, 17. |
CAI X Y, QIAO D Z, SUN L W, et al. Study on fire accident treatment of lithium ion battery energy storage power station[J]. Chemical Safety & Environment, 2022, 35(7): 10-13, 17 (in Chinese). | |
32 | SI X S, ZHANG Z X, HU C H. Data-driven remaining useful life prognosis techniques[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. |
33 | SI X S, WANG W B, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 219-237. |
/
〈 |
|
〉 |