多段翼低雷诺数绕流涡⁃边界层相互干扰
收稿日期: 2022-06-20
修回日期: 2022-07-07
录用日期: 2022-07-29
网络出版日期: 2022-08-08
基金资助
国家自然科学基金(11721202);中国博士后科学基金(2021M700010)
Vortex/boundary⁃layer interactions over multi⁃element airfoil at low Reynolds number
Received date: 2022-06-20
Revised date: 2022-07-07
Accepted date: 2022-07-29
Online published: 2022-08-08
Supported by
National Natural Science Foundation of China(11721202);China Postdoctoral Science Foundation(2021M700010)
主翼是多段翼构型的主要升力部件,其背风面边界层受到前缘缝翼尾迹中复杂旋涡结构的干扰,此类涡-边界层干扰问题与飞行器的气动力特性密切相关。采用时间解析的粒子图像测速技术对低雷诺数范围内30P30N多段翼构型在不同迎角下的主翼背风面流动开展精细实验测量,结合傅里叶模态分解和有限时间的李亚普诺夫指数流场诊断方法,从时均统计和涡动力学2个角度研究了前缘缝翼尾迹涡与主翼边界层之间的干扰特性并总结了迎角的影响规律。在实验雷诺数下,随着迎角增大,主翼背风面边界层由附着状态转变为大分离状态,前缘缝翼尾迹与主翼边界层之间的混合效应逐渐减弱。涡动力学研究表明,前缘缝翼尾迹涡产生的多频扰动能“浸入”主翼边界层并影响其内部流动结构演化,其中基频和二次谐波扰动激发的“双二次涡”结构在此过程中占据主导。二次涡在涡-边界层干扰中扮演重要角色:一方面,二次涡能将更多尾迹涡扰动注入边界层,促进尾迹与边界层的混合;另一方面,二次涡能将边界层外区的高速流体注入近壁区进而增强边界层抵抗流动分离的能力。随着迎角增大,二次涡的产生位置逐渐沿弦向后移,对主翼前缘附近混合效应的促进作用以及流动分离的抑制作用逐渐降低,最终导致尾迹与边界层之间的混合逐渐减弱、主翼背风面边界层发生大分离。
关键词: 多段翼构型; 涡-边界层干扰; 低雷诺数; 水洞实验; 时间解析粒子图像测速
王将升 , 王晋军 . 多段翼低雷诺数绕流涡⁃边界层相互干扰[J]. 航空学报, 2023 , 44(12) : 127652 -127652 . DOI: 10.7527/S1000-6893.2022.27652
The main element is the main contributor to the lift generation of a multi-element airfoil. However, the boundary layer over the suction surface of the main element is inherently disturbed by the complex vortices in the slat wake. Therefore, the vortex/boundary-layer interactions over the main element are closely related to the aerodynamic performance of an aircraft. This study uses time-resolved particle image velocimetry to investigate the effects of angle of attack on the vortex/boundary-layer interactions over a 30P30N multi-element airfoil at a low Reynolds number, with the aid of Fourier mode decomposition and finite-time Lyapunov exponents. The results of both mean statistics and vortex dynamics are obtained. For the mean statistics, the attached boundary layer above the main element changes into a separated one as the angle of attack increases. Meanwhile, the mixing between the slat wake and the boundary layer is gradually limited with the increasing angle of attack. For the vortex dynamics, the disturbances of different frequencies, originating from the complex vortices in the slat wake, are found to penetrate the boundary layer and subsequently affect the vortex dynamics in the boundary layer. The “double-secondary vortices” topology, triggered by the wake disturbances of fundamental frequency and second harmonic, dominates the vortex dynamics in the boundary layer. These secondary vortices are vital to the vortex/boundary-layer interactions in that they inject the fluid in the slat wake into the boundary layer to promote the mixing between the slat wake and the boundary layer, while injecting the high-speed fluid around the boundary layer edge into the near-wall region and therefore enhancing the ability of the boundary layer to resist flow separation. As the angle of attack increases, the formation of secondary vortices moves downstream. As a result, the effects of secondary vortices on the wake/boundary-layer mixing and the flow separation suppression around the leading edge of the main element decrease, leading to the reduced wake/boundary-layer mixing with an increasing angle of attack and the flow separation at the largest angle of attack.
1 | VAN DAM C P. The aerodynamic design of multi-element high-lift systems for transport airplanes[J]. Progress in Aerospace Sciences, 2002, 38(2): 101-144. |
2 | TRAUB L W, KAULA M P. Effect of leading-edge slats at low Reynolds numbers[J]. Aerospace, 2016, 3(4): 39. |
3 | 付军泉, 史志伟, 周梦贝, 等. 一种翼身融合飞行器的失速特性研究[J]. 航空学报, 2020, 41(1): 123176. |
FU J Q, SHI Z W, ZHOU M B, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123176 (in Chinese). | |
4 | 刘沛清, 戴佳骅, 夏慧, 等. 大型飞机增升装置气动机构一体化设计技术进展[J]. 民用飞机设计与研究, 2021(1): 1-8. |
LIU P Q, DAI J H, XIA H, et al. Overview of integrated design technology for aerodynamic mechanism of large aircraft high lift device[J]. Civil Aircraft Design & Research, 2021(1): 1-8 (in Chinese). | |
5 | 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10. |
LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10 (in Chinese). | |
6 | 杨茵, 陈迎春, 李栋. 多段翼混合边界层改变对流场的影响研究[J]. 航空工程进展, 2016, 7(1): 30-37. |
YANG Y, CHEN Y C, LI D. Influence of confluent boundary layer changing for multi-element airfoils flow field[J]. Advances in Aeronautical Science and Engineering, 2016, 7(1): 30-37 (in Chinese). | |
7 | YING S X, SPAID F W, MCGINLEY C B, et al. Investigation of confluent boundary layers in high-lift flows[J]. Journal of Aircraft, 1999, 36(3): 550-562. |
8 | THOMAS F O, NELSON R C, LIU X. Experimental investigation of the confluent boundary layer of a high-lift system[J]. AIAA Journal, 2000, 38(6): 978-988. |
9 | SQUIRE L C. Interactions between wakes and boundary-layers[J]. Progress in Aerospace Sciences, 1989, 26(3): 261-288. |
10 | WANG J S, FENG L H, WANG J J, et al. G?rtler vortices in low-Reynolds-number flow over multi-element airfoil[J]. Journal of Fluid Mechanics, 2018, 835: 898-935. |
11 | WANG J S, WANG J J, KIM K C. Wake/shear layer interaction for low-Reynolds-number flow over multi-element airfoil[J]. Experiments in Fluids, 2019, 60(1): 16. |
12 | WANG J S, WANG J J. Vortex dynamics for flow around the slat cove at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2021, 919: A27. |
13 | WANG J S, WANG J J. Wake-induced transition in the low-Reynolds-number flow over a multi-element airfoil[J]. Journal of Fluid Mechanics, 2021, 915: A28. |
14 | JENKINS L, KHORRAMI M, CHOUDHARI M. Characterization of unsteady flow structures near leading-edge slat: Part I: PIV measurements[C]∥ 10th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2004. |
15 | DECK S, LARAUFIE R. Numerical investigation of the flow dynamics past a three-element aerofoil[J]. Journal of Fluid Mechanics, 2013, 732: 401-444. |
16 | SOUZA D S, RODRíGUEZ D, HIMENO F H T, et al. Dynamics of the large-scale structures and associated noise emission in airfoil slats[J]. Journal of Fluid Mechanics, 2019, 875: 1004-1034. |
17 | PASCIONI K A, CATTAFESTA L N. Unsteady characteristics of a slat-cove flow field[J]. Physical Review Fluids, 2018, 3(3): 034607. |
18 | SATTI R, LI Y B, SHOCK R, et al. Unsteady flow analysis of a multi-element airfoil using lattice boltzmann method[J]. AIAA Journal, 2012, 50(9): 1805-1816. |
19 | LI W P, GUO Y H, LIU W L. On the mechanism of acoustic resonances from a leading-edge slat[J]. Aerospace Science and Technology, 2021, 113: 106711. |
20 | TERRACOL M, MANOHA E. Wall-resolved large-eddy simulation of a three-element high-lift airfoil[J]. AIAA Journal, 2020, 58(2): 517-536. |
21 | BOUTILIER M S H, YARUSEVYCH S. Effects of end plates and blockage on low-Reynolds-number flows over airfoils[J]. AIAA Journal, 2012, 50(7): 1547-1559. |
22 | PAN C, XUE D, XU Y, et al. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(10): 104704. |
23 | CHAMPAGNAT F, PLYER A, LE BESNERAIS G, et al. Fast and accurate PIV computation using highly parallel iterative correlation maximization[J]. Experiments in Fluids, 2011, 50(4): 1169-1182. |
24 | HALLER G. Distinguished material surfaces and coherent structures in three-dimensional fluid flows[J]. Physica D: Nonlinear Phenomena, 2001, 149(4): 248-277. |
25 | HALLER G, YUAN G. Lagrangian coherent structures and mixing in two-dimensional turbulence[J]. Physica D: Nonlinear Phenomena, 2000, 147(3-4): 352-370. |
26 | MA L Q, FENG L H, PAN C, et al. Fourier mode decomposition of PIV data[J]. Science China Technological Sciences, 2015, 58(11): 1935-1948. |
27 | ISTVAN M S, YARUSEVYCH S. Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil[J]. Experiments in Fluids, 2018, 59(3): 52. |
28 | WANG S, ZHOU Y, ALAM M M, et al. Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers[J]. Physics of Fluids, 2014, 26(11): 115107. |
29 | JONES L E, SANDBERG R D, SANDHAM N D. Stability and receptivity characteristics of a laminar separation bubble on an aerofoil[J]. Journal of Fluid Mechanics, 2010, 648: 257-296. |
30 | HAIN R, K?HLER C J, RADESPIEL R. Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils[J]. Journal of Fluid Mechanics, 2009, 630: 129-153. |
31 | BURGMANN S, SCHR?DER W. Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements[J]. Experiments in Fluids, 2008, 45(4): 675-691. |
32 | OLSON D A, KATZ A W, NAGUIB A M, et al. On the challenges in experimental characterization of flow separation over airfoils at low Reynolds number[J]. Experiments in Fluids, 2013, 54(2): 1470. |
/
〈 |
|
〉 |