论文

基于L1自适应推力矢量型V/STOL飞行器增稳控制

  • 胡润昌 ,
  • 王子安 ,
  • 陈永亮 ,
  • 周大鹏 ,
  • 杨大鹏 ,
  • 龚正
展开
  • 1.南京航空航天大学 航空学院 非定常空气动力学与流动控制工业和信息化部重点实验室,南京  210016
    2.中国运载火箭技术研究院,北京  100076
    3.沈阳飞机设计研究所,沈阳  110000
.E-mail: chenyl79@nuaa.edu.cn

收稿日期: 2022-06-17

  修回日期: 2022-07-11

  录用日期: 2022-07-21

  网络出版日期: 2022-08-08

基金资助

航空科学基金(2019ZA052001)

Stability augmentation control of thrust-vectored V/STOL aircraft based on L1 adaptive control

  • Runchang HU ,
  • Zian WANG ,
  • Yongliang CHEN ,
  • Dapeng ZHOU ,
  • Dapeng YANG ,
  • Zheng GONG
Expand
  • 1.Key Laboratory of Unsteady Aerodynamics and Flow Control,Ministry of Industry and Information Technology,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.China Academy of Launch Vehicle Technology,Beijing  100076,China
    3.Shenyang Aircraft Design and Research Institute,Shenyang  110000,China

Received date: 2022-06-17

  Revised date: 2022-07-11

  Accepted date: 2022-07-21

  Online published: 2022-08-08

Supported by

Aeronautical Science Foundation of China(2019ZA052001)

摘要

针对推力矢量型V/STOL飞行器起降过渡阶段动力系统转换过程存在的控制量耦合与冗余问题,设计了相应的内环增稳控制器和控制分配策略。首先,利用喷射气流效应经验公式建立了带升力损失项的动力系统与飞行动力学模型。然后,采用非线性动态逆方法设计了外环控制律,采用L1自适应控制方法设计了内环控制律,以补偿系统建模误差及参数不确定性的影响。最后,根据控制冗余度,基于效能分配准则设计了控制分配策略,实现了控制解耦,并进行了仿真验证。蒙特卡洛打靶仿真结果表明,即使存在较大参数摄动,控制器仍然可以很好地跟踪参考输入,这说明设计的控制器控制性能与鲁棒性良好。

本文引用格式

胡润昌 , 王子安 , 陈永亮 , 周大鹏 , 杨大鹏 , 龚正 . 基于L1自适应推力矢量型V/STOL飞行器增稳控制[J]. 航空学报, 2023 , 44(S1) : 727642 -727642 . DOI: 10.7527/S1000-6893.2022.27642

Abstract

To solve the problem of control quantity coupling and redundancy in the power system conversion process during the take-off and landing transition stage of the Vertical/Short Takeoff and Landing (V/STOL) aircraft, the corresponding inner loop stability augmentation controller and control allocation strategy are designed. A power system model and a dynamic model with lift loss are established by using the empirical formula of jet effect. Based on the conventional nonlinear dynamic inverse control of the outer loop, the L1 adaptive controller is designed as the inner loop stability augmentation control to compensate the mismatch and uncertainty in the system. According to control redundancy, a control allocation strategy is designed based on the efficiency allocation criterion. Control decoupling is realized, and simulation is carried out for verification. The simulation results of Monte Carlo shooting show that the controller can track the reference input well even if there is a large parameter perturbation, indicating that the controller designed in this paper has good control performance and robustness.

参考文献

1 王健, 郭锁凤. 先进的短距起飞垂直着陆技术发展综述[J]. 航空科学技术199957(2): 24-26.
  WANG J, GUO S F. Developing status of ASTOVL technology[J]. Aeronautical Science & Technology199957(2): 24-26 (in Chinese).
2 RICHARD S. UK on a roll after F-35B landing trials[J]. Flight International2018194(5666): 136-138.
3 彭润艳, 王和平, 林宇. 带升力风扇飞机的短距起飞建模和仿真研究[J]. 计算机仿真200825(4): 46-48.
  PENG R Y, WANG H P, LIN Y, Modeling and simulation of advanced short takeoff aircraft with lift-fan[J]. Computer Simulation200825(4): 46-48 (in Chinese).
4 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报202142(8): 525840 .
  ZHANG Z B, ZHANG X L. WANG J X,et al. An IDLC landing control method of carrier tased aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525840 (in Chinese).
5 罗飞, 张军红, 王博, 等. 基于直接力的着舰航迹动态逆控制仿真研究[J]. 电光与控制202128(9): 103-107.
  LUO F, ZHANG J H, WANG B, et al. Simulation research on direct-lift-control based NDI control of landing trajectory[J]. Electronics Optics & Control202128(9): 103-107 (in Chinese).
6 张力, 王立新. 推力矢量飞机控制律设计及过失速机动仿真研究[J]. 飞行力学200826(4): 1-3.
  ZHANG L, WANG L X. Research on flight control law design of fighter with vectoring thrust and post-stall maneuver simulation[J]. Flight Dynamics200826(4): 1-3 (in Chinese).
7 刘凯, 朱纪洪, 余波.推力矢量飞机纵向鲁棒动态逆控制[J]. 控制与决策201328(7): 1113-1116.
  LIU K, ZHU J H, YU B. Longitudinal control of aircraft with thrust vectoring using robust dynamic inversion[J]. Control and Decision201328(7): 1113-1116 (in Chinese).
8 王美仙, 李明, 张子军. 推力矢量飞机控制系统设 计与仿真研究[J]. 飞行力学200725(4): 8-11.
  WANG M X, LI M, ZHANG Z J. Control system design and emulation for vectored thrust air-craft[J]. Flight Dynamics200725(4): 8-11 (in Chinese).
9 刘俊杰, 陈增强, 孙明玮, 等. 自抗扰控制在推力矢量飞机大迎角机动中的应用[J]. 工程科学学报201941(9): 1187-1193.
  LIU J J, CHEN Z Q, SUN M W, et al. Application of active disturbance rejection control in high-angle-of-attack maneuver for aircraft with thrust vector[J]. Chinese Journal of Engineering201941(9): 1187-1193 (in Chinese).
10 SESHAGIRI S, PROMTUN E. Sliding mode control of F-16 longitudinal dynamics[C]∥Proceedings of 2008 American Control Conference. 2008.
11 CHIANG R Y, SAFONOV M G, HAIGES K, et al . A fixed H∞ controller for a supermaneuverable fighter performing the herbst maneuver[J]. Automatic199329(1): 111.
12 CAO C Y, HOVAKIMYAN N. Design and analysis of a novel L1 adaptive controller, part I: control signal and asymptotic stability[M]. Minneapolis: IEEE, 2006: 243-257.
13 薛静, 杨亚洁, 刘宇, 等. 基于L1自适应控制的无人机横侧向控制[J]. 西北工业大学学报201533(1): 41-44.
  XUE J, YANG Y J, LIU Y, et al. Lateral roll angle control of UAV based on L1 adaptive control method[J]. Journal of Northwestern Polytechnical University201533(1): 41-44 (in Chinese).
14 高丽, 吴文海, 梅丹, 等. 侧向自动着舰引导控制L_1自适应设计[J]. 飞行力学2016(4): 41-45.
  GAO L, WU W H, MEI D, et al. Design of L_1 adaptive controller for lateral-directional automatic carrier landing[J]. Flight Dynamics2016(4): 41-45 (in Chinese).
15 郑志成, 周洲. 垂直起降飞机设计中升力风扇估算模型分析[J]. 飞行力学201028(3): 21-23.
  ZHENG Z C, ZHOU Z. Analysis on estimation model of lift fan when designing VTOL[J]. Flight Dynamics201028(3): 21-23 (in Chinses).
16 鲁可, 袁锁中. L1自适应方法在无人战斗机纵向控制中的应用[J]. 航空兵器20135(10): 36-39.
  LU K, YUAN S Z. Longitudinal controller for UCAV based on L1 adaptive control theory[J]. Aero Weaponry20135(10): 36-39 (in Chinese).
17 李煜, 刘小雄, 李吉宽, 等. 基于L1自适应着舰纵向控制与特性分析[J]. 计算机测量与控制201826(12): 120-124.
  LI Y, LIU X X, LI J K, et al. Design and characteristic analysis of L1 adaptive longitudinal control for carrier-based landing[J]. Computer Measurement & Control201826(12): 120-124 (in Chinese).
18 MALLIKARJUNAN S, NESBITT B, KHARISOV E, et al. L1 adaptive controller for attitude control of multirotors: AIAA-2012-4831[R]. Reston: AIAA, 2012.
19 CAO C Y, HOVAKIMYAN N. Design and analysis of a novel L1 adaptive controller, part II: guaranteed transient performance[M]. 2006: 46-59.
20 SHAKARIAN A. Application of Monte-Carlo techniques to the 757/767 autoland dispersion analysis by simulation: AIAA-1983-2193[R]. Reston: AIAA, 1983.
21 WILLIAMS P S. A Monte Carlo dispersion analysis of the X-33 simulation software: AIAA-2001-4067[R]. 2001.
22 张超, 陈磊, 陈宗基, 等.基于视觉的UCAV自主着陆蒙特卡洛仿真研究[J]. 系统仿真学报201022(9): 2235-2240.
  ZHANG C, CHEN L, CHEN Z J, et al. Monte Carlo simulation for vision-based autonomous landing of unmanned combat aerial vehicles[J]. Journal of System Simulation201022(9): 2235-2240 (in Chinese).
文章导航

/