基于L1自适应推力矢量型V/STOL飞行器增稳控制
收稿日期: 2022-06-17
修回日期: 2022-07-11
录用日期: 2022-07-21
网络出版日期: 2022-08-08
基金资助
航空科学基金(2019ZA052001)
Stability augmentation control of thrust-vectored V/STOL aircraft based on L1 adaptive control
Received date: 2022-06-17
Revised date: 2022-07-11
Accepted date: 2022-07-21
Online published: 2022-08-08
Supported by
Aeronautical Science Foundation of China(2019ZA052001)
针对推力矢量型V/STOL飞行器起降过渡阶段动力系统转换过程存在的控制量耦合与冗余问题,设计了相应的内环增稳控制器和控制分配策略。首先,利用喷射气流效应经验公式建立了带升力损失项的动力系统与飞行动力学模型。然后,采用非线性动态逆方法设计了外环控制律,采用L1自适应控制方法设计了内环控制律,以补偿系统建模误差及参数不确定性的影响。最后,根据控制冗余度,基于效能分配准则设计了控制分配策略,实现了控制解耦,并进行了仿真验证。蒙特卡洛打靶仿真结果表明,即使存在较大参数摄动,控制器仍然可以很好地跟踪参考输入,这说明设计的控制器控制性能与鲁棒性良好。
胡润昌 , 王子安 , 陈永亮 , 周大鹏 , 杨大鹏 , 龚正 . 基于L1自适应推力矢量型V/STOL飞行器增稳控制[J]. 航空学报, 2023 , 44(S1) : 727642 -727642 . DOI: 10.7527/S1000-6893.2022.27642
To solve the problem of control quantity coupling and redundancy in the power system conversion process during the take-off and landing transition stage of the Vertical/Short Takeoff and Landing (V/STOL) aircraft, the corresponding inner loop stability augmentation controller and control allocation strategy are designed. A power system model and a dynamic model with lift loss are established by using the empirical formula of jet effect. Based on the conventional nonlinear dynamic inverse control of the outer loop, the L1 adaptive controller is designed as the inner loop stability augmentation control to compensate the mismatch and uncertainty in the system. According to control redundancy, a control allocation strategy is designed based on the efficiency allocation criterion. Control decoupling is realized, and simulation is carried out for verification. The simulation results of Monte Carlo shooting show that the controller can track the reference input well even if there is a large parameter perturbation, indicating that the controller designed in this paper has good control performance and robustness.
1 | 王健, 郭锁凤. 先进的短距起飞垂直着陆技术发展综述[J]. 航空科学技术, 1999, 57(2): 24-26. |
WANG J, GUO S F. Developing status of ASTOVL technology[J]. Aeronautical Science & Technology, 1999, 57(2): 24-26 (in Chinese). | |
2 | RICHARD S. UK on a roll after F-35B landing trials[J]. Flight International, 2018, 194(5666): 136-138. |
3 | 彭润艳, 王和平, 林宇. 带升力风扇飞机的短距起飞建模和仿真研究[J]. 计算机仿真, 2008, 25(4): 46-48. |
PENG R Y, WANG H P, LIN Y, Modeling and simulation of advanced short takeoff aircraft with lift-fan[J]. Computer Simulation, 2008, 25(4): 46-48 (in Chinese). | |
4 | 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 525840 . |
ZHANG Z B, ZHANG X L. WANG J X,et al. An IDLC landing control method of carrier tased aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525840 (in Chinese). | |
5 | 罗飞, 张军红, 王博, 等. 基于直接力的着舰航迹动态逆控制仿真研究[J]. 电光与控制, 2021, 28(9): 103-107. |
LUO F, ZHANG J H, WANG B, et al. Simulation research on direct-lift-control based NDI control of landing trajectory[J]. Electronics Optics & Control, 2021, 28(9): 103-107 (in Chinese). | |
6 | 张力, 王立新. 推力矢量飞机控制律设计及过失速机动仿真研究[J]. 飞行力学, 2008, 26(4): 1-3. |
ZHANG L, WANG L X. Research on flight control law design of fighter with vectoring thrust and post-stall maneuver simulation[J]. Flight Dynamics, 2008, 26(4): 1-3 (in Chinese). | |
7 | 刘凯, 朱纪洪, 余波.推力矢量飞机纵向鲁棒动态逆控制[J]. 控制与决策, 2013, 28(7): 1113-1116. |
LIU K, ZHU J H, YU B. Longitudinal control of aircraft with thrust vectoring using robust dynamic inversion[J]. Control and Decision, 2013, 28(7): 1113-1116 (in Chinese). | |
8 | 王美仙, 李明, 张子军. 推力矢量飞机控制系统设 计与仿真研究[J]. 飞行力学, 2007, 25(4): 8-11. |
WANG M X, LI M, ZHANG Z J. Control system design and emulation for vectored thrust air-craft[J]. Flight Dynamics, 2007, 25(4): 8-11 (in Chinese). | |
9 | 刘俊杰, 陈增强, 孙明玮, 等. 自抗扰控制在推力矢量飞机大迎角机动中的应用[J]. 工程科学学报, 2019, 41(9): 1187-1193. |
LIU J J, CHEN Z Q, SUN M W, et al. Application of active disturbance rejection control in high-angle-of-attack maneuver for aircraft with thrust vector[J]. Chinese Journal of Engineering, 2019, 41(9): 1187-1193 (in Chinese). | |
10 | SESHAGIRI S, PROMTUN E. Sliding mode control of F-16 longitudinal dynamics[C]∥Proceedings of 2008 American Control Conference. 2008. |
11 | CHIANG R Y, SAFONOV M G, HAIGES K, et al . A fixed H∞ controller for a supermaneuverable fighter performing the herbst maneuver[J]. Automatic, 1993, 29(1): 111. |
12 | CAO C Y, HOVAKIMYAN N. Design and analysis of a novel L1 adaptive controller, part I: control signal and asymptotic stability[M]. Minneapolis: IEEE, 2006: 243-257. |
13 | 薛静, 杨亚洁, 刘宇, 等. 基于L1自适应控制的无人机横侧向控制[J]. 西北工业大学学报, 2015, 33(1): 41-44. |
XUE J, YANG Y J, LIU Y, et al. Lateral roll angle control of UAV based on L1 adaptive control method[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 41-44 (in Chinese). | |
14 | 高丽, 吴文海, 梅丹, 等. 侧向自动着舰引导控制L_1自适应设计[J]. 飞行力学, 2016(4): 41-45. |
GAO L, WU W H, MEI D, et al. Design of L_1 adaptive controller for lateral-directional automatic carrier landing[J]. Flight Dynamics, 2016(4): 41-45 (in Chinese). | |
15 | 郑志成, 周洲. 垂直起降飞机设计中升力风扇估算模型分析[J]. 飞行力学, 2010, 28(3): 21-23. |
ZHENG Z C, ZHOU Z. Analysis on estimation model of lift fan when designing VTOL[J]. Flight Dynamics, 2010, 28(3): 21-23 (in Chinses). | |
16 | 鲁可, 袁锁中. L1自适应方法在无人战斗机纵向控制中的应用[J]. 航空兵器, 2013, 5(10): 36-39. |
LU K, YUAN S Z. Longitudinal controller for UCAV based on L1 adaptive control theory[J]. Aero Weaponry, 2013, 5(10): 36-39 (in Chinese). | |
17 | 李煜, 刘小雄, 李吉宽, 等. 基于L1自适应着舰纵向控制与特性分析[J]. 计算机测量与控制, 2018, 26(12): 120-124. |
LI Y, LIU X X, LI J K, et al. Design and characteristic analysis of L1 adaptive longitudinal control for carrier-based landing[J]. Computer Measurement & Control, 2018,26(12): 120-124 (in Chinese). | |
18 | MALLIKARJUNAN S, NESBITT B, KHARISOV E, et al. L1 adaptive controller for attitude control of multirotors: AIAA-2012-4831[R]. Reston: AIAA, 2012. |
19 | CAO C Y, HOVAKIMYAN N. Design and analysis of a novel L1 adaptive controller, part II: guaranteed transient performance[M]. 2006: 46-59. |
20 | SHAKARIAN A. Application of Monte-Carlo techniques to the 757/767 autoland dispersion analysis by simulation: AIAA-1983-2193[R]. Reston: AIAA, 1983. |
21 | WILLIAMS P S. A Monte Carlo dispersion analysis of the X-33 simulation software: AIAA-2001-4067[R]. 2001. |
22 | 张超, 陈磊, 陈宗基, 等.基于视觉的UCAV自主着陆蒙特卡洛仿真研究[J]. 系统仿真学报, 2010, 22(9): 2235-2240. |
ZHANG C, CHEN L, CHEN Z J, et al. Monte Carlo simulation for vision-based autonomous landing of unmanned combat aerial vehicles[J]. Journal of System Simulation,2010, 22(9): 2235-2240 (in Chinese). |
/
〈 |
|
〉 |