流体力学与飞行力学

自适应Walsh函数有限体积方法

  • 任炯 ,
  • 王刚 ,
  • 胡国栋 ,
  • 石晓露
展开
  • 西北工业大学 航空学院,西安  710072
.E-mail:wanggang@nwpu.edu.cn

收稿日期: 2022-05-15

  修回日期: 2022-07-01

  录用日期: 2022-07-27

  网络出版日期: 2022-08-08

基金资助

国家自然科学基金(U2141254)

Adaptive finite volume method with Walsh basis functions

  • Jiong REN ,
  • Gang WANG ,
  • Guodong HU ,
  • Xiaolu SHI
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China

Received date: 2022-05-15

  Revised date: 2022-07-01

  Accepted date: 2022-07-27

  Online published: 2022-08-08

Supported by

National Natural Science Foundation of China(U2141254)

摘要

Walsh函数有限体积方法(FVM-WBF)是一种具备网格内部捕捉间断能力的新型数值方法。全局增加网格单元内Walsh基函数的数目可以有效提升FVM-WBF方法的数值分辨率,但同时会带来计算量的急剧增加。为了平衡FVM-WBF方法分辨率和计算效率之间的矛盾,利用Walsh基函数的数值特性,提出了一种结合自适应策略的Walsh函数有限体积方法。该方法根据流场特征动态调整网格单元内的Walsh基函数数目,仅在流场结构变化剧烈的局部区域使用足量的基函数,避免全局性增加基函数所引发的计算量爆发式增长。选取二维非定常双马赫反射、Rayleigh-Taylor不稳定性问题和定常NACA0012翼型绕流为算例,将新发展的自适应Walsh函数有限体积方法与原始Walsh函数有限体积方法进行对比测试。理论分析和数值结果表明,Walsh函数有限体积方法“天然”具备便捷的自适应潜能,能够方便地依据流场特征动态地实现Walsh基函数数目的优化配置,实现高分辨率和高效率的双赢。

本文引用格式

任炯 , 王刚 , 胡国栋 , 石晓露 . 自适应Walsh函数有限体积方法[J]. 航空学报, 2023 , 44(8) : 127444 -127444 . DOI: 10.7527/S1000-6893.2022.27444

Abstract

The Finite Volume Method with Walsh Basis Functions (FVM-WBF method) is a novel numerical method with the ability to capture discontinuity inside grids. While globally increasing the number of Walsh basis functions can effectively improve the numerical resolution, it also leads to a large increase in computational costs. To balance the resolution and the computational efficiency of the FVM-WBF method, an adaptive finite volume method with Walsh basis functions is proposed according to the numerical properties of the Walsh basis functions. The proposed method dynamically adjusts the number of Walsh basis functions in the grid based on the features of the flow field. Sufficient basis functions are employed only in the local region where the flow field structure changes dramatically, so as to avoid the explosive growth of the computation caused by the global increase of the basis functions. Several cases are selected to test the adaptive FVM-WBF method in comparison with the original FVM-WBF method, including two-dimensional Double Mach reflection problem, Rayleigh-Taylor instability problem and the flow over NACA0012 airfoil. Theoretical analysis and numerical results show that the adaptive FVM-WBF method has the inherent capability of convenient dynamic adaptation, and a balance between high resolution and high efficiency in the numerical simulations has been achieved by intelligently adapting the number of Walsh basis functions in the flow field.

参考文献

1 阎超. 航空CFD四十年的成就与困境[J]. 航空学报202243(10): 526490.
  YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica202243(10): 526490 (in Chinese).
2 BALAN A, PARK M A, WOOD S, et al. Verification of anisotropic mesh adaptation for complex aerospace applications[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
3 张扬, 张来平, 赫新, 等. 基于自适应混合网格的脱体涡模拟[J]. 航空学报201637(12): 3605-3614.
  ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation based on adaptive hybrid grids[J]. Acta Aeronautica et Astronautica Sinica201637(12): 3605-3614 (in Chinese).
4 LISEIKIN V D. The construction of structured adaptive grids—A review[J]. Computational Mathematics and Mathematical Physics199636(1): 1-32.
5 PAN J H, WANG Q, ZHANG Y S, et al. High-order compact finite volume methods on unstructured grids with adaptive mesh refinement for solving inviscid and viscous flows[J]. Chinese Journal of Aeronautics201831(9): 1829-1841.
6 HAMFELDT B F, SALVADOR T. Higher-order adaptive finite difference methods for fully nonlinear elliptic equations[J]. Journal of Scientific Computing201875(3): 1282-1306.
7 唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报201940(10): 122894.
  TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica201940(10): 122894 (in Chinese).
8 BIGONI C, HESTHAVEN J S. Adaptive WENO methods based on radial basis function reconstruction[J]. Journal of Scientific Computing201772(3): 986-1020.
9 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报201839(5): 121697.
  TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica201839(5): 121697 (in Chinese).
10 陈浩, 袁先旭, 王田天, 等. 国家数值风洞(NNW)工程中的黏性自适应笛卡尔网格方法研究进展[J]. 航空学报202142(9): 625732.
  CHEN H, YUAN X X, WANG T T, et al. Advances in viscous adaptive Cartesian grid methodology of NNW Project[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625732 (in Chinese).
11 陈浩, 华如豪, 袁先旭, 等. 基于自适应笛卡尔网格的飞翼布局流动模拟[J]. 航空学报202243(8): 125674.
  CHEN H, HUA R H, YUAN X X, et al. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica202243(8): 125674 (in Chinese).
12 CHO M, JUN S. r-Adaptive mesh generation for shell finite element analysis[J]. Journal of Computational Physics2004199(1): 291-316.
13 AMEUR F BEN, BALIS J, VANDENHOECK R, et al. R-adaptive algorithms for supersonic flows with high-order flux reconstruction methods[J]. Computer Physics Communications2022276: 108373.
14 LI W Z, LUO H, PANDARE A, et al. A p-adaptive discontinuous Galerkin method for compressible flows using charm++[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
15 BASSI F, BOTTI L, COLOMBO A, et al. A p-adaptive matrix-free discontinuous Galerkin method for the implicit LES of incompressible transitional flows[J]. Flow, Turbulence and Combustion2020105(2): 437-470.
16 XIA M T, SHAO S H, CHOU T. A frequency-dependent p-adaptive technique for spectral methods[J]. Journal of Computational Physics2021446: 110627.
17 PANOURGIAS K, EKATERINARIS J A. Three-dimensional discontinuous Galerkin h/p adaptive numerical solutions for compressible flows[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
18 NTOUKAS G, MANZANERO J, RUBIO G, et al. An entropy-stable p-adaptive nodal discontinuous Galerkin for the coupled Navier-Stokes/Cahn-Hilliard system[J]. Journal of Computational Physics2022458: 111093.
19 任炯, 王刚. 一种在网格内部捕捉间断的Walsh函数有限体积方法[J]. 力学学报202153(3): 773-788.
  REN J, WANG G. A finite volume method with Walsh basis functions to capture discontinuity inside grid[J]. Chinese Journal of Theoretical and Applied Mechanics202153(3): 773-788 (in Chinese).
20 REN J, WANG G. A Walsh-function-based finite volume method to capture discontinuity inside grid cell[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
21 GNOFFO P A. Global series solutions of nonlinear differential equations with shocks using Walsh functions[J]. Journal of Computational Physics2014258: 650-688.
22 WALSH J L. A closed set of normal orthogonal functions[J]. American Journal of Mathematics192345 (1): 5-24.
23 REN J, WANG G, MA B P. Multidimensional extension and application of entropy-consistent scheme for navier-stokes equations on unstructured grids[C]∥ 23rd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2017.
24 ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks[J]. Journal of Computational Physics2009228(15): 5410-5436.
25 REN J, WANG G, MA M S. A group of CFL-dependent flux-limiters to control the numerical dissipation in Multi-stage unsteady calculation[J]. Journal of Scientific Computing201981(1): 186-216.
26 GOTTLIEB S, KETCHESON D I, SHU C W. High order strong stability preserving time discretizations[J]. Journal of Scientific Computing200938(3): 251-289.
27 SHI J, ZHANG Y T, SHU C W. Resolution of high order WENO schemes for complicated flow structures[J]. Journal of Computational Physics2003186(2): 690-696.
28 LIU Y L, ZHANG W W, ZHENG X B. An accuracy preserving limiter for the high-order discontinuous Galerkin method on unstructured grids[J]. Computers & Fluids2019192: 104253.
文章导航

/