基于PSO与WSVD的飞机部件位姿拟合方法
收稿日期: 2022-03-15
修回日期: 2022-04-19
录用日期: 2022-06-17
网络出版日期: 2022-08-04
Posture and position computing method for aircraft component based on PSO and WSVD
Received date: 2022-03-15
Revised date: 2022-04-19
Accepted date: 2022-06-17
Online published: 2022-08-04
位姿拟合是飞机大部件调姿对合的核心环节之一,所采用的算法直接影响调姿对合的精度和效率。由于飞机部件不可避免地存在装配误差,并且不同区域调姿基准点的精度要求通常也存在差异,传统的奇异值分解法不能保证全部基准点都满足精度要求。加权奇异值分解法能够通过提高公差要求低的基准点的转换残差,来保证公差要求严格的基准点的转换精度,但权重如何准确分配仍缺乏有效的手段。针对以上问题,提出一种基于粒子群优化结合加权奇异值分解的位姿计算方法,利用粒子群优化算法搜索调姿基准点的权重值,保证每个基准点的转换残差均满足精度要求。通过在飞机数字化装配中的应用分析,验证了算法的有效性。
何晓煦 , 雷沛 , 潘登 , 杨阳 , 李现坤 , 邓珍波 . 基于PSO与WSVD的飞机部件位姿拟合方法[J]. 航空学报, 2023 , 44(7) : 427162 -427162 . DOI: 10.7527/S1000-6893.2022.27162
Posture and position computation is a key part for aligning and joining large aircraft component, which makes significant impacts on accuracy and efficiency. Due to the assembly errors of the aircraft components and the different accuracy requirements of the datum points, the traditional Singular Value Decomposition (SVD) method is usually invalid. Weighted Singular Value Decomposition (WSVD) method can improve the accuracy of the points with higher tolerance requirements by sacrificing the points with lower requirements. However, how to assign weights to the points is still a problem. A method based on Particle Swarm Optimization (PSO) and WSVD is proposed in this paper to solve this problem. The weights of the points is searched by PSO method to assure the transformation residue of each datum point meets its tolerance requirements. Through the application of aircraft digital assembly, the validity of the method was verified.
1 | 陈文亮, 潘国威, 王珉. 基于力位协同控制的大飞机机身壁板装配调姿方法[J]. 航空学报, 2019, 40(2): 522403. |
CHEN W L, PAN G W, WANG M. High precision positioning method for aircraft fuselage panel based on force/position control[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522403 (in Chinese). | |
2 | 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5): 908-919. |
QIU B G, JIANG J X, BI Y B, et al. Posture alignment and joining test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 908-919 (in Chinese). | |
3 | 文科, 杜福洲. 大尺度产品数字化智能对接关键技术研究[J]. 计算机集成制造系统, 2016, 22(3): 686-694. |
WEN K, DU F Z. Key technologies for digital intelligent alignment of large-scale components[J]. Computer Integrated Manufacturing Systems, 2016, 22(3): 686-694 (in Chinese). | |
4 | 林雪竹, 李丽娟, 曹国华, 等. 大部件对接中iGPS高精度位姿测量优化设计[J]. 航空学报, 2015, 36(4): 1299-1311. |
LIN X Z, LI L J, CAO G H, et al. Optimal design based on iGPS high-precision posture measurement for large size component joining[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1299-1311 (in Chinese). | |
5 | 郑联语, 朱绪胜, 姜丽萍. 大尺寸测量技术在航空制造业中的应用及关键技术[J]. 航空制造技术, 2013, 56(7): 38-41. |
ZHENG L Y, ZHU X S, JIANG L P. Application of large-scale measurement in aviation manufacturing and its key technology[J]. Aeronautical Manufacturing Technology, 2013, 56(7): 38-41 (in Chinese). | |
6 | 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7): 1319-1324. |
GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1319-1324 (in Chinese). | |
7 | 陈磊, 黄翔, 赵乐乐, 等. 飞机装配坐标系公共基准点粗差检测与修正方法[J]. 北京航空航天大学学报, 2014, 40(11): 1589-1594. |
CHEN L, HUANG X, ZHAO L L, et al. Gross error detection and correction method of public reference point in aircraft assembly coordinate system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1589-1594 (in Chinese). | |
8 | CHENG L, WANG Q, LI J X, et al. A posture evaluation method for a large component with thermal deformation and its application in aircraft assembly[J]. Assembly Automation, 2014, 34(3): 275-284. |
9 | 雷沛, 郑联语. 面向飞机大部件调姿的PPPS机构球铰点中心位置闭环标定方法[J]. 航空学报, 2016, 37(10): 3186-3196. |
LEI P, ZHENG L Y. Closed-loop calibration method of PPPS mechanism ball joint center position for posture adjustment of large aircraft components[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3186-3196 (in Chinese). | |
10 | ARUN K S, HUANG T S, BLOSTEIN S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700. |
11 | 朱永国, 张文博, 刘春锋, 等. 基于SDT和间接平差的中机身自动调姿精度分析[J]. 航空学报, 2017, 38(12): 421301. |
ZHU Y G, ZHANG W B, LIU C F, et al. Accuracy analysis for automatical adjustment of aircraft fuselage posture based on SDT and indirect adjustment[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 421301 (in Chinese). | |
12 | HOU Y K, LI Y, ZHANG J, et al. A simple mechanical measurement system for the posture evaluation of wing components using the PSO and ICP algorithms[J]. Assembly Automation, 2015, 35(1): 104-113. |
13 | 苗勇, 何凯, 陈国强, 等.基于随机测量点的机翼精加工位姿计算方法[J]. 航空制造技术, 2015, 58(6): 72-76, 79. |
MIAO Y, HE K, CHEN G Q, et al. Posture calculating method for aircraft wing finishing machining based on random measuring point[J]. Aeronautical Manufacturing Technology, 2015, 58(6): 72-76, 79 (in Chinese). | |
14 | CHEN Z H, DU F Z, TANG X Q. Position and orientation best-fitting based on deterministic theory during large scale assembly[J]. Journal of Intelligent Manufacturing, 2018, 29(4): 827-837. |
15 | 朱绪胜, 郑联语. 基于关键装配特性的大型零部件最佳装配位姿多目标优化算法[J]. 航空学报, 2012, 33(9): 1726-1736. |
ZHU X S, ZHENG L Y. Multiple-objective optimization algorithm based on key assembly characteristics to posture best fit for large component assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1726-1736 (in Chinese). | |
16 | ZHENG L Y, ZHU X S, LIU R W, et al. A novel algorithm of posture best fit based on key characteristics for large components assembly[J]. Procedia CIRP, 2013, 10: 162-168. |
17 | 陈远志, 黄杰, 章易镰, 等. 改进的粒子群算法求解飞机位姿评估问题[J]. 航空制造技术, 2020, 63(6): 90-96. |
CHEN Y Z, HUANG J, ZHANG Y L, et al. Improved particle swarm optimization algorithm for aircraft posture evaluation problems[J]. Aeronautical Manufacturing Technology, 2020, 63(6): 90-96 (in Chinese). | |
18 | 蒋睿嵩, 魏发远, 冯大勇, 等. 一种权值约束的精确配准算法[J]. 图学学报, 2014, 35(2): 167-172. |
JIANG R S, WEI F Y, FENG D Y, et al. A new weight constraint precision registration algorithm[J]. Journal of Graphics, 2014, 35(2): 167-172 (in Chinese). | |
19 | 谢政委, 林嘉睿, 邾继贵, 等. 基于空间长度约束的坐标控制场精度增强方法[J]. 中国激光, 2015, 42(1): 0108005. |
XIE Z W, LIN J R, ZHU J G, et al. Accuracy enhancement method for coordinate control field based on space length constraint[J]. Chinese Journal of Lasers, 2015, 42(1): 0108005 (in Chinese). | |
20 | 田文朋, 夏峰, 宋鹏飞, 等. 水陆两栖飞机静力试验优化机翼变形的载荷配平[J]. 航空学报, 2020, 41(11): 223956. |
TIAN W P, XIA F, SONG P F, et al. Load balancing for wing deformation optimization in amphibious aircraft static test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 223956 (in Chinese). | |
21 | 张俐, 江春. 基于纵向对称面重合的机身位姿求解方法[J]. 计量学报, 2017, 38(4): 385-390. |
ZHANG L, JIANG C. A new method of aircraft position and pose based on the coincidence of the symmetry plane[J]. Acta Metrologica Sinica, 2017, 38(4): 385-390 (in Chinese). |
/
〈 |
|
〉 |