微型无人机栖息设计技术综述
收稿日期: 2022-06-04
修回日期: 2022-06-27
录用日期: 2022-07-29
网络出版日期: 2022-08-03
基金资助
陕西省重点研发计划(2021ZDLGY09-06)
A review of perching technology of micro⁃UAV
Received date: 2022-06-04
Revised date: 2022-06-27
Accepted date: 2022-07-29
Online published: 2022-08-03
Supported by
Key Research and Development Projects of Shaanxi Province(2021ZDLGY09-06)
微型无人机栖息设计研究对提升微型无人机续航、增强微型无人机环境适应性和提高微型无人机长时间侦察监视能力具有重要的意义。随着人们对微型无人机续航性能和复杂环境的适应性要求越来越高,科研工作者对微型无人机的栖息设计技术进行了深入研究,并取得了显著成果。主要梳理了微型无人机的栖息原理、栖息机构、栖息方法,分析了栖息机构的特点与发展趋势。同时介绍了变体无人机在栖息领域的研究,并阐述了无人机栖息与抓取和爬壁之间的联系。此外将无人机分为多旋翼和固定翼2大类来进行栖息方法的研究分析,内容主要包括无人机的栖息位置选择、基于时间接触理论的仿生轨迹设计、视觉栖息导航、无人机的气动分析和动力学建模以及相应的栖落机动控制等。通过对无人机栖息设计技术的研究归纳分析,可为后续从事该方面的研究人员提供参考和借鉴。
张良阳 , 李占科 , 韩海洋 . 微型无人机栖息设计技术综述[J]. 航空学报, 2023 , 44(12) : 27573 -027573 . DOI: 10.7527/S1000-6893.2022.27573
Research on the perching design of micro-UAV plays an important role in improving the endurance performance of micro-UAV,enhancing the environmental adaptability of micro-UAV and improving the long-term detection and monitoring capability of micro-UAV. With the increasing requirements for the endurance performance of micro-UAV and the adaptability of complex environment,researchers all over the world begin to study the perching technology of micro-UAV,and have made remarkable achievements in the research on micro-UAV’s principle of perching,mechanism design,method of perching,etc. This article summarizes the principle of perching,mechanism of perching and method of perching of micro-UAV in the literature in recent years,and analyzes the characteristics and development trend of the mechanism of perching. At the same time, the research on morphing UAV in the field of perching is discussed,and the relationship between UAV wall climbing and grasping and UAV perching is also expounded. In addition, UAV is divided into two categories of multi-rotor and fixed-wing for the research and analysis of perching methods, including UAV perching position selection, bionic trajectory design based on time contact theory, visual perching navigation, aerodynamic analysis and dynamic modeling of UAV and corresponding perching maneuver control. Through the research and inductive analysis of UAV perching design technology, it can provide reference for subsequent researchers engaged in this field.
1 | 闫超,涂良辉,王聿豪,等. 无人机在我国民用领域应用综述[J]. 飞行力学,2022,40(3):1-6,12. |
YAN C, TU L H, WANG Y H,et al. Application of unmanned aerial vehicle in civil field in China[J]. Flight Dynamics,2022,40(3):1-6,12 (in Chinese). | |
2 | 崔敬魁. 面向电网巡线和森林火情监测的无人机路径规划算法研究[D]. 西安:西安理工大学,2017:1-4. |
CUI J K. Research on UAV path planning algorithm for power line inspection and forest fire monitoring[D]. Xi’an:Xi’an University of Technology,2017:1-4 (in Chinese). | |
3 | 杨扬,王连发,张宇峰. 无人机桥梁检测技术进展与瓶颈问题分析[J]. 现代交通技术,2020,17(4):27-32. |
YANG Y, WANG L F, ZHANG Y F. Development and challenging issues of bridge detection technology using unmanned aerial vehicles[J]. Modern Transportation Technology,2020,17(4):27-32 (in Chinese). | |
4 | 黄龙,张卫华,陈今茂,等. 爬壁机器人的研究现状与发展趋势[J]. 机械工程与技术,2021(3):345-363. |
HUANG L, ZHANG W H, CHEN J M,et al. A review and trend of wall-climbing robots[J]. Mechanical Engineering and Technology,2021(3):345-363 (in Chinese). | |
5 | CULLER E, THOMAS G, LEE C. A perching landing gear for a quadcopter[C] ∥ 53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference. Reston:AIAA,2012. |
6 | ERBIL M A, PRIOR S D, KEANE A J. Design optimisation of a reconfigurable perching element for vertical take-off and landing unmanned aerial vehicles[J]. International Journal of Micro Air Vehicles,2013,5(3):207-228. |
7 | CHI W C, LOW K H, HOON K H,et al. Design of control strategy for autonomous perching with a quadrotor[J]. Applied Mechanics and Materials,2013,461:506-512. |
8 | CHI W C, LOW K H, HOON K H,et al. An optimized perching mechanism for autonomous perching with a quadrotor[C] ∥ 2014 IEEE International Conference on Robotics and Automation(ICRA). Piscataway:IEEE Press, 2014: 3109-3115. |
9 | LUO C, YU L J, REN P. A vision-aided approach to perching a bioinspired unmanned aerial vehicle[J]. IEEE Transactions on Industrial Electronics,2018,65(5):3976-3984. |
10 | PHANG S K, HAMID M R A, CHEN X D,et al. Autonomous ledge detection and landing with multi-rotor UAV[C] ∥ 2018 IEEE 14th International Conference on Control and Automation(ICCA). Piscataway:IEEE Press, 2018: 42-47. |
11 | LIN T J, LONG S Y, STOL K A. Automated perching of a multirotor UAV atop round timber posts[C] ∥ 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM). Piscataway:IEEE Press,2018: 486-491. |
12 | POPEK K M, JOHANNES M S, WOLFE K C,et al. Autonomous grasping robotic aerial system for perching(AGRASP)[C] ∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Piscataway: IEEE Press,2018: 1-9. |
13 | HANG K Y, LYU X M, SONG H R,et al. Perching and resting-A paradigm for UAV maneuvering with modularized landing gears[J]. Science Robotics,2019,4(28):eaau6637. |
14 | ZHANG H J, SUN J F, ZHAO J G. Compliant bistable gripper for aerial perching and grasping[C] ∥ 2019 International Conference on Robotics and Automation(ICRA). Piscataway:IEEE Press,2019:1248-1253. |
15 | ZHANG H J, LERNER E, CHENG B,et al. Compliant bistable grippers enable passive perching for micro aerial vehicles[J]. IEEE/ASME Transactions on Mechatronics,2021,26(5):2316-2326. |
16 | YU P F, WANG Z H, WONG K C. Exploring aerial perching and grasping with dual symmetric manipulators and compliant end-effectors[J]. International Journal of Micro Air Vehicles,2019,11:175682931987741. |
17 | KITCHEN R, BIERWOLF N, HARBERTSON S,et al. Design and evaluation of a perching hexacopter drone for energy harvesting from power lines[C] ∥ 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Piscataway:IEEE Press,2020:1192-1198. |
18 | MAGESH M, JAWAHAR P K. Examination of shape memory polymer-auxetic landing gears on landing approach for quadcopter[J]. Materials Today:Proceedings,2021,47:471-479. |
19 | KOVA? M, GERMANN J, HüRZELER C,et al. A perching mechanism for micro aerial vehicles[J]. Journal of Micro-Nano Mechatronics,2009,5(3):77-91. |
20 | STEWART W, GUARINO L, PISKAREV Y,et al. Passive perching with energy storage for winged aerial robots[J]. Advanced Intelligent Systems,2021:2100150. |
21 | BACKUS S B, ODHNER L U, DOLLAR A M. Design of hands for aerial manipulation:Actuator number and routing for grasping and perching[C] ∥ 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press,2014: 34-40. |
22 | NAGENDRAN A, CROWTHER W, RICHARDSON R. Biologically inspired legs for UAV perched landing[J]. IEEE Aerospace and Electronic Systems Magazine,2012,27(2):4-13. |
23 | CHI W C, LOW K H, HOON K H,et al. A bio-inspired adaptive perching mechanism for unmanned aerial vehicles[J]. Journal of Robotics and Mechatronics,2012,24(4):642-648. |
24 | DOYLE C E, BIRD J J, ISOM T A,et al. An avian-inspired passive mechanism for quadrotor perching[J]. IEEE/ASME Transactions on Mechatronics,2013,18(2):506-517. |
25 | XIE P, MA O. Grasping analysis of a bio-inspired UAV/MAV perching mechanism[C] ∥ Proceedings of ASME 2013 International Mechanical Engineering Congress and Exposition. New York:ASME,2013. |
26 | NADAN P M, ANTHONY T M, MICHAEL D M,et al. A bird-inspired perching landing gear system[J]. Journal of Mechanisms and Robotics,2019,11(6):061002. |
27 | NADAN P M, LEE C L. Computational design of a bird-inspired perching landing gear mechanism[C] ∥ ASME International Mechanical Engineering Congress and Exposition. New York:ASME,2018. |
28 | MCLAREN A, FITZGERALD Z, GAO G,et al. A passive closing,tendon driven,adaptive robot hand for ultra-fast,aerial grasping and perching[C] ∥ 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Piscataway:IEEE Press,2019: 5602-5607. |
29 | BAI L, WANG H, CHEN X H,et al. Design and experiment of a deformable bird-inspired UAV perching mechanism[J]. Journal of Bionic Engineering,2021,18(6):1304-1316. |
30 | RODERICK W R T, CUTKOSKY M R, LENTINK D. Bird-inspired dynamic grasping and perching in arboreal environments[J]. Science Robotics,2021,6(61):eabj7562. |
31 | RODERICK W R T, CUTKOSKY M R, LENTINK D. Touchdown to take-off:At the interface of flight and surface locomotion[J]. Interface Focus,2017,7(1):20160094. |
32 | 昌敏,孙杨,白俊强. 垂面栖息微型无人机飞行原理与技术进展[J]. 无人系统技术,2019,2(2):22-31. |
CHANG M, SUN Y, BAI J Q. Flight principles and research progress on vertical-perching micro aerial vehicle(MAV)[J]. Unmanned Systems Technology,2019,2(2):22-31 (in Chinese). | |
33 | 倪勇,吉爱红,肖天航,等. 兼具扑翼飞行与爬壁能力的仿生两栖机器人研究[J]. 机电一体化,2017,23(2):9-16,46. |
NI Y, JI A H, XIAO T H,et al. Study of biomimetic amphibious robot for flapping and climbing[J]. Mechatronics,2017, 23(2):9-16, 46 (in Chinese). | |
34 | CUTKOWSKY M, DESBIENS A. Bio-inspired perching and crawling air vehicles[EB/OL]. (2008-10-2)[2022-6-4]. . |
35 | DESBIENS A L, ASBECK A T, CUTKOSKY M R. Scansorial landing and perching[M] ∥ Robotics research. Berlin,Heidelberg:Springer,2011: 169-184. |
36 | DESBIENS A L, ASBECK A T, CUTKOSKY M R. Landing,perching and taking off from vertical surfaces[J]. The International Journal of Robotics Research,2011,30(3):355-370. |
37 | LUSSIER D A. Landing and perching on vertical surfaces[D]. Stanford: Stanford University,2012. |
38 | DICKSON J D, CLARK J E. Design of a multimodal climbing and gliding robotic platform[J]. IEEE/ASME Transactions on Mechatronics,2012,18(2):494-505. |
39 | MEHANOVIC D, BASS J, COURTEAU T,et al. Autonomous thrust-assisted perching of a fixed-wing UAV on vertical surfaces[C] ∥ Conference on Biomimetic and Biohybrid Systems. Cham:Springer,2017: 302-314. |
40 | MEHANOVIC D, RANCOURT D, DESBIENS A L. Fast and efficient aerial climbing of vertical surfaces using fixed-wing UAVs[J]. IEEE Robotics and Automation Letters,2019,4(1):97-104. |
41 | POPE M T, KIMES C W, JIANG H,et al. A multimodal robot for perching and climbing on vertical outdoor surfaces[J]. IEEE Transactions on Robotics,2017,33(1):38-48. |
42 | POPE M T, CUTKOSKY M R. Thrust-assisted perching and climbing for a bioinspired UAV[C] ∥ Conference on Biomimetic and Biohybrid Systems. Cham:Springer,2016: 288-296. |
43 | ZHANG K, CHERMPRAYONG P, ALHINAI T M,et al. SpiderMAV:Perching and stabilizing micro aerial vehicles with bio-inspired tensile anchoring systems[C] ∥ 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Piscataway: IEEE Press,2017: 6849-6854. |
44 | NGUYEN H N, SIDDALL R, STEPHENS B,et al. A passively adaptive microspine grapple for robust,controllable perching[C] ∥ 2019 2nd IEEE International Conference on Soft Robotics(RoboSoft). Piscataway:IEEE,2019. |
45 | BACKUS S, IZRAELEVITZ J, QUAN J,et al. Design and testing of an ultra-light weight perching system for sloped or vertical rough surfaces on Mars[C] ∥ 2020 IEEE Aerospace Conference. Piscataway:IEEE Press,2020: 1-12. |
46 | LIU Y, SUN G X, CHEN H P. Impedance control of a bio-inspired flying and adhesion robot[C] ∥ 2014 IEEE International Conference on Robotics and Automation(ICRA). Piscataway:IEEE Press,2014:3564-3569. |
47 | WOPEREIS H W, VAN DER MOLEN T D, POST T H,et al. Mechanism for perching on smooth surfaces using aerial impacts[C]∥2016 IEEE International Symposium on Safety, Security,and Rescue robotics(SSRR). Piscataway:IEEE Press,2016:154-159. |
48 | HUANG T H, ELIBOLI A, CHONG N Y. A design for UAV irregular surface landing capability[C]∥ Proceedings of the 2020 17th International Conference on Ubiquitous Robots. 2020. |
49 | LIU S S, DONG W, MA Z,et al. Adaptive aerial grasping and perching with dual elasticity combined suction cup[J]. IEEE Robotics and Automation Letters,2020,5(3):4766-4773. |
50 | LIU S S, DONG W, MA Z,et al. Dual-durometer combination of vacuum cup for aerial grasping[C] ∥ 2020 IEEE International Conference on Real-time Computing and Robotics(RCAR). Piscataway:IEEE Press,2020:8-13. |
51 | TSUKAGOSHI H, OSADA Y. Soft hybrid suction cup capable of sticking to various objects and environments[J]. Actuators,2021,10(3):50. |
52 | MAHMOOD S K, BAKHY S H, TAWFIK M A. Propeller-type wall-climbing robots:A review[C] ∥ IOP Conference Series:Materials Science and Engineering. 2021, 1094(1): 012106. |
53 | DING X, YU Y, ZHU J J. Trajectory linearization tracking control for dynamics of a multi-propeller and multifunction aerial robot-MMAR[C] ∥ 2011 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2011:757-762. |
54 | DING X L, YU Y S. Motion planning and stabilization control of a multipropeller multifunction aerial robot[J]. IEEE/ASME Transactions on Mechatronics,2013,18(2):645-656. |
55 | SHIN J U, KIM D, KIM J H,et al. Micro aerial vehicle type wall-climbing robot mechanism[C] ∥ 2013 IEEE RO-MAN. Piscataway:IEEE Press,2013: 722-725. |
56 | MYEONG W C, JUNG K Y, JUNG S W,et al. Drone-type wall-climbing robot platform for structural health monitoring[C] ∥ 6th AESE/11th ANCRiSST Joint Conference. 2015. |
57 | MYEONG W C, JUNG K Y, JUNG S W,et al. Development of a drone-type wall-sticking and climbing robot[C] ∥ 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence(URAI). Piscataway:IEEE Press,2015: 386-389. |
58 | YAMADA M, NAKAO M, HADA Y,et al. Development and field test of novel two-wheeled UAV for bridge inspections[C] ∥ 2017 International Conference on Unmanned Aircraft Systems(ICUAS). Piscataway:IEEE Press, 2017: 1014-1021. |
59 | IWAMOTO T, ENAKA T, TADA K. Development of testing machine for tunnel inspection using multi-rotor UAV[J]. Journal of Physics:Conference Series,2017,842:012068. |
60 | JUNG S, SHIN J U, MYEONG W,et al. Mechanism and system design of MAV(Micro Aerial Vehicle)-type wall-climbing robot for inspection of wind blades and non-flat surfaces[C] ∥ 2015 15th International Conference on Control,Automation and Systems(ICCAS). Piscataway:IEEE Press,2015:1757-1761. |
61 | TANAKA K, ZHANG D, INOUE S,et al. A design of a small mobile robot with a hybrid locomotion mechanism of wheels and multi-rotors[C] ∥ 2017 IEEE International Conference on Mechatronics and Automation(ICMA). Piscataway:IEEE,2017. |
62 | MYEONG W, SONG S, MYUNG H. Development of a wall-climbing drone with a rotary arm for climbing various-shaped surfaces[C] ∥ 2018 15th International Conference on Ubiquitous Robots(UR). Piscataway:IEEE Press,2018:687-692. |
63 | WATANABE K, NAKATSUKA T, NAGAI I. Production of a wall-climbing-type quadrotor and its experiment for verifying basic operations[C] ∥ 2018 IEEE International Conference on Mechatronics and Automation(ICMA). Piscataway:IEEE Press,2018:1850-1855. |
64 | ANDRIKOPOULOS G, NIKOLAKOPOULOS G. Vortex actuation via electric ducted fans:An experimental study[J]. Journal of Intelligent & Robotic Systems,2019,95(3):955-973. |
65 | YASUNAGA M, LEE J H, OKAMOTO S. Prototype design and experimental test of a rotorcraft capable of adhering to and moving on the ceiling[C] ∥ MATEC Web of Conferences. Paris:EDP Sciences,2016. |
66 | MYEONG W, MYUNG H. Development of a wall-climbing drone capable of vertical soft landing using a tilt-rotor mechanism[J]. IEEE Access,2018,7:4868-4879. |
67 | JIANG S, ZHANG J. Real-time crack assessment using deep neural networks with wal-climbing unmanned aerial system[J]. Computer-Aided Civil and Infrastructure Engineering,2020,35(6):549-564. |
68 | MAHMOOD S K, BAKHY S H, TAWFIK M A. Novel wall-climbing robot capable of transitioning and perching[C] ∥ IOP Conference Series:Materials Science and Engineering. 2020. |
69 | DAVID N B, ZARROUK D. Design and analysis of FCSTAR, a hybrid flying and climbing sprawl tuned robot[J]. IEEE Robotics and Automation Letters,2021,6(4):6188-6195. |
70 | KOMURA H, WATANABE K, NAGAI I. Production of a small-sized tandem rotor aircraft with two tiltable coaxial rotors and its experiments[C] ∥ 2021 IEEE International Conference on Mechatronics and Automation(ICMA). Piscataway:IEEE Press,2021: 687-691. |
71 | LEE H, YU B, TIRTAWARDHANA C,et al. CAROS-Q:Climbing aerial robot system adopting rotor offset with a quasi-decoupling controller[J]. IEEE Robotics and Automation Letters,2021,6(4):8490-8497. |
72 | LEE H, JEONG M, KIM C,et al. Low-level pose control of tilting multirotor for wall perching tasks using reinforcement learning[C] ∥ 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Piscataway:IEEE Press,2021. |
73 | MAO J, LI G, NOGAR S,et al. Aggressive visual perching with quadrotors on inclined surfaces[C] ∥ 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Piscataway:IEEE Press,2021:5242-5248. |
74 | ANDERSON M. The sticky-pad plane and other innovative concepts for perching UAVS[C] ∥ 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA,2009. |
75 | DALER L, KLAPTOCZ A, BRIOD A,et al. A perching mechanism for flying robots using a fibre-based adhesive[C] ∥ 2013 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press,2013:4433-4438. |
76 | JIANG H, POPE M T, HAWKES E W,et al. Modeling the dynamics of perching with opposed-grip mechanisms[C] ∥ 2014 IEEE International Conference on Robotics and Automation(ICRA). Piscataway:IEEE Press,2014:3102-3108. |
77 | THOMAS J, POPE M, LOIANNO G,et al. Aggressive flight with quadrotors for perching on inclined surfaces[J]. Journal of Mechanisms and Robotics,2016,8(5):051007. |
78 | KALANTARI A, MAHAJAN K, RUFFATTO D,et al. Autonomous perching and take-off on vertical walls for a quadrotor micro air vehicle[C] ∥ 2015 IEEE International Conference on Robotics and Automation(ICRA). Piscataway:IEEE Press,2015:4669-4674. |
79 | GUO Y, ZHANG J, JU Y,et al. Climbing reconnaissance drone design[C] ∥ IOP Conference Series:Materials Science and Engineering. 2018, 452: 042060. |
80 | 蒋俊高. 面向无人机的仿生壁面自动起降系统的设计[D]. 广州:广东工业大学,2020: 13-40. |
JIANG J G. Design of bioic wall surface automatic takeoff and landing system for UAV[D]. Guangzhou:Guangdong University of Technology,2020: 13-40 (in Chinese). | |
81 | PARK S, DREW D S, FOLLMER S,et al. Lightweight high voltage generator for untethered electroadhesive perching of micro air vehicles[J]. IEEE Robotics and Automation Letters,2020,5(3):4485-4492. |
82 | GRAULE M A, CHIRARATTANANON P, FULLER S B,et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion[J]. Science,2016,352(6288):978-982. |
83 | REICH G, WOJNAR O, ALBERTANI R. Aerodynamic performance of a notional perching MAV design[C] ∥ 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA,2009:63. |
84 | MANCHESTER Z R, LIPTON J I, WOOD R J,et al. A variable forward-sweep wing design for enhanced perching in micro aerial vehicles[C] ∥ 55th AIAA Aerospace Sciences Meeting. Reston:AIAA,2017:0011. |
85 | GREATWOOD C, WALDOCK A, RICHARDSON T. Perched landing manoeuvres with a variable sweep wing UAV[J]. Aerospace Science and Technology,2017,71:510-520. |
86 | 袁亮,何真,王月. 变体无人机栖落机动建模与轨迹优化[J]. 南京航空航天大学学报,2018,50(2):266-275. |
YUAN L, HE Z, WANG Y. Modeling and trajectory optimization of perching maneuvers for morphing UAV[J]. Journal of Nanjing University of Aeronautics & Astronautics,2018,50(2):266-275 (in Chinese). | |
87 | HURST A, WICKENHEISER A, GARCIA E. Localization and perching maneuver tracking for a morphing UAV[C] ∥ Proceedings of IEEE/ION PLANS 2008. Piscataway:IEEE Press,2008. |
88 | WICKENHEISER A, GARCIA E. Perching aerodynamics and trajectory optimization[C] ∥ Active and Passive Smart Structures and Integrated Systems 2007. San Diego:International Society for Optics and Photonics,2007,6525:191-199. |
89 | 何真,陆宇平,郑曼曼. 变体无人机栖息机动的仿真与分析[C] ∥ 第三十三届中国控制会议论文集(E卷). 上海:上海系统科学出版社,2014: 109-114. |
HE Z, LU Y P, ZHENG M M. Simulation and analysis of perching maneuvers for morphing UAVS[C] ∥ Proceedings of the 33rd China Control Conference(Volume E). Shanghai:Shanghai Systems Science Press,2014: 109-114. | |
90 | 岳珵,何真,王无天. 变体辅助的无人机栖落机动模糊控制设计[J]. 南京航空航天大学学报,2020,52(6):871-880. |
YUE C, HE Z, WANG W T. Fuzzy control design for perching maneuvers of morphing UAVs[J]. Journal of Nanjing University of Aeronautics & Astronautics,2020,52(6):871-880 (in Chinese). | |
91 | WANG P F, ZHANG Y F, QIN H L,et al. Offline perching location selection for quadrotor UAV in urban environment[C] ∥ 2016 12th IEEE International Conference on Control and Automation(ICCA). Piscataway:IEEE Press,2016. |
92 | ZHANG Z, XIE P, MA O. Bio-inspired trajectory generation for UAV perching movement based on tau theory[J]. International Journal of Advanced Robotic Systems,2014,11(9):141. |
93 | ZHANG Z, XIE P, MA O. Bio-inspired trajectory generation for UAV perching[C] ∥ 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway:IEEE Press,2013:997-1002. |
94 | CHI W. A bio-inspired methodology of automatic perching for unmanned aerial vehicles[D]. Singapore:Nanyang Technological University,2016: 23-41. |
95 | MAITRA A, PRASATH S R, PADHI R. A brief survey on bio-inspired algorithms for autonomous landing[J]. IFAC-Papers Online,2016,49(1):407-412. |
96 | TOMI? T, MAIER M, HADDADIN S. Learning quadrotor maneuvers from optimal control and generalizing in real-time[C] ∥ 2014 IEEE International Conference on Robotics and Automation(ICRA). Piscataway:IEEE Press,2014:1747-1754. |
97 | GHADIOK V, GOLDIN J, REN W. On the design and development of attitude stabilization,vision-based navigation,and aerial gripping for a low-cost quadrotor[J]. Autonomous Robots,2012,33(1):41-68. |
98 | ZHANG H, ZHAO J. Vision based surface slope estimation for unmanned aerial vehicle perching[C] ∥ Dynamic Systems and Control Conference in 2018. New York:ASME,2018. |
99 | 叶希. 近面环境下四旋翼无人机的控制技术研究[D]. 南京:南京理工大学,2019: 29-37. |
YE X. Research on control technology of quadrotor UAV in near-surface environment[D]. Nanjing:Nanjing University of Science & Technology,2019: 29-37 (in Chinese). | |
100 | 孙杨,昌敏,白俊强. 微小型四旋翼无人机垂面栖停轨迹规划与控制[J]. 航空学报,2022,43(9):325756. |
SUN Y, CHANG M, BAI J Q. Trajectory planning and control for micro-quadrotor perching on vertical surface[J]. Acta Aeronautica et Astronautica Sinica,2022,43(9):325756 (in Chinese). | |
101 | TAHK M J, HAN S, LEE B Y,et al. Perch landing assisted by thruster(PLAT):Concept and trajectory optimization[J]. International Journal of Aeronautical and Space Sciences,2016,17(3):378-390. |
102 | TAHK M J, HAN S, LEE B Y,et al. Trajectory optimization and control algorithm of longitudinal perch landing assisted by thruster[C] ∥ 2016 European Control Conference(ECC). Piscataway:IEEE Press,2016. |
103 | WALDOCK A, GREATWOOD C, SALAMA F,et al. Learning to perform a perched landing on the ground using deep reinforcement learning[J]. Journal of Intelligent and Robotic Systems,2018,92(3-4):685-704. |
104 | ALIKHAN M, PEYADA N K, GO T H. Flight dynamics and optimization of three-dimensional perching maneuver[J]. Journal of Guidance,Control,and Dynamics,2013,36(6):1791-1797. |
105 | 李达,何真,阚莹莹. 无人机栖落机动建模与轨迹优化[J]. 飞行力学,2017,35(4):47-51. |
LI D, HE Z, KAN Y Y. Modeling and trajectory optimization of perching maneuvers for UAV[J]. Flight Dynamics,2017,35(4):47-51 (in Chinese). | |
106 | 邹文露. 无人机栖息动态特性分析与同步控制[D]. 成都:电子科技大学,2018:36-49. |
ZOU W L. Dynamic characteristics analysis and synchronous control of unmanned aerial vehicle[D]. Chengdu:University of Electronic Science and Technology of China,2018:36-49 (in Chinese). | |
107 | FEROSKHAN M, GO T H. Control strategy of sideslip perching maneuver under dynamic stall influence[J]. Aerospace Science and Technology,2018,72:150-163. |
108 | MOORE J, CORY R, TEDRAKE R. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees[J]. Bioinspiration & Biomimetics,2014,9(2):025013. |
109 | CRANDALL K L, MINOR M A. UAV fall detection from a dynamic perch using Instantaneous Centers of Rotation and inertial sensing[C] ∥ 2015 IEEE International Conference on Robotics and Automation(ICRA). Piscataway:IEEE Press,2015: 4675-4679. |
110 | 王无天,何真,岳珵. 飞行器栖落机动的轨迹跟踪控制及吸引域优化计算[J]. 北京航空航天大学学报,2021,47(2):414-423. |
WANG W T,HEN Z, YUE C. Trajectory tracking control and optimal computation of attraction domain for aircraft in perching maneuvers[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,40(11):414-423 (in Chinese). | |
111 | 万慧雯,何真,曹瑞,等. 无人机栖落机动的一种离线鲁棒预测控制算法[J]. 南京航空航天大学学报,2019,51(6):785-794. |
WAN H W, HE Z, CAO R. An off-line robust predictive control algorithm for UAV in perching maneuver[J]. Journal of Nanjing University of Aeronautics & Aeronautics,2019,51(6):785-794 (in Chinese). |
/
〈 |
|
〉 |