流体力学与飞行力学

快速响应压力敏感涂料截止频率实验研究

  • 高丽敏 ,
  • 欧阳波 ,
  • 姜衡 ,
  • 葛宁 ,
  • 李瑞宇
展开
  • 1.西北工业大学 动力与能源学院,西安 710072
    2.西北工业大学 翼型、叶栅空气动力学国家级重点实验室,西安 710072
    3.西安交通大学 航天航空学院,西安 710049
.E-mail: gaolm@nwpu.edu.cn

收稿日期: 2022-05-31

  修回日期: 2022-06-22

  录用日期: 2022-07-20

  网络出版日期: 2022-07-25

基金资助

国家自然科学基金(51790512);高等学校学科创新引智计划(B17037);民机专项;西北工业大学博士论文创新基金(CX202009)

Experimental study on cut-off frequency of fast response pressure sensitive paint

  • Limin GAO ,
  • Bo OUYANG ,
  • Heng JIANG ,
  • Ning GE ,
  • Ruiyu LI
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Aerodynamics Design and Research,Northwestern Polytechnical University,Xi’an 710072,China
    3.School of Astronautics,Xi’an Jiaotong University,Xi’an 710049,China
E-mail: gaolm@nwpu.edu.cn

Received date: 2022-05-31

  Revised date: 2022-06-22

  Accepted date: 2022-07-20

  Online published: 2022-07-25

Supported by

National Natural Science Foundation of China(51790512);The 111 Project(B17037);MIIT Project;Doctoral Thesis Innovation Fund of Northwestern Polytechnical University(CX202009)

摘要

快速响应压力敏感涂料(PSP)测量技术在获取模型表面动态压力这一关键参数上具有广阔的应用前景,而聚合物粘结剂作为快速响应PSP的重要组成部分,其结构对涂料的性能有着决定性的影响。针对两类聚合物支链长度不同的快速响应压力敏感涂料,在正弦波型高频动态压力光学校准系统中采用光强法对涂料进行测量,获得不同的压力脉动频率下涂料发射光强的时域变化结果。通过对测得的原始压力及光强信号进行滤波获得了不同频率下压敏涂料的发光响应对压力变化的跟随性;对压力及光强信号进行快速傅里叶变换获得各压敏涂料的截止频率。结果显示两类压敏涂料截止频率分别为1.8~3.8 kHz和4.7~9.0 kHz,压敏涂料的截止频率与聚合物酯基链长度具有正相关性。采用的测量方法可有效获取PSP的动态参数,相较于传统阶跃型校准方案,更能为工程上PSP校准和应用需求提供参考和借鉴。

本文引用格式

高丽敏 , 欧阳波 , 姜衡 , 葛宁 , 李瑞宇 . 快速响应压力敏感涂料截止频率实验研究[J]. 航空学报, 2023 , 44(11) : 127556 -127556 . DOI: 10.7527/S1000-6893.2022.27556

Abstract

Fast response Pressure Sensitive Paint (PSP) measurement technology has a broad application prospect in obtaining the dynamic pressure which is a key parameter of model surface. The structure the polymer binder, an important part of fast response PSP, has a decisive impact on the performance of PSP. For two types of fast response pressure sensitive paints with different branch lengths of polymer, the intensity method was used to measure the paints in a high frequency dynamic pressure optical calibration system based on sinusoidal wave. The time-domain variation results of the emission intensity of the PSP under different pressure pulsation frequencies were obtained. After filtering the measured original pressure and intensity signals, the following behaviors of the luminescent response of pressure-sensitive paints to pressure changes at different frequencies was obtained. The pressure and intensity signals were processed by fast Fourier transform to obtain the cut-off frequency of each pressure-sensitive paint. The results show that the cut-off frequencies of the two kinds of pressure sensitive paints are between 1.8–3.8 kHz and 4.7–9.0 kHz respectively. The cut-off frequency of the pressure sensitive paints is positively correlated with the branched chain length of the polymer. The measurement method used can effectively obtain the dynamic parameters of PSP. Compared with the traditional step calibration scheme, this technology can provide a reference for the calibration and application needs of PSP in engineering.

参考文献

1 刘波, 周强, 靳军, 等. 压力敏感涂料技术及其应用[J]. 航空动力学报200621(2): 225-233.
  LIU B, ZHOU Q, JIN J, et al. Applications of pressure-sensitive paint technique[J]. Journal of Aerospace Power200621(2): 225-233 (in Chinese).
2 SAKAMURA Y, MATSUMOTO M, SUZUKI T. High frame-rate imaging of surface pressure distribution using a porous pressure-sensitive paint[J]. Measurement Science & Technology200516(3): 759-765.
3 李国帅, 周强, 刘祥, 等. 压力敏感涂料特性及其校准技术实验研究[J]. 航空学报201334(2): 227-234.
  LI G S, ZHOU Q, LIU X, et al. Experimental research of pressure sensitive paint performance and calibration technique[J]. Acta Aeronautica et Astronautica Sinica201334(2): 227-234 (in Chinese).
4 高丽敏, 吴亚楠, 胡小全, 等. 基于光强的快速响应PSP动态测量技术及其应用[J]. 航空学报201435(3): 607-623.
  GAO L M, WU Y N, HU X Q, et al. Intensity-based fast response PSP technique and its applications[J]. Acta Aeronautica et Astronautica Sinica201435(3): 607-623 (in Chinese).
5 KAMEDA M, TEZUKA N, HANGAI T, et al. Adsorptive pressure-sensitive coatings on porous anodized alu-minium[J]. Measurement Science and Technology200415: 489-500.
6 LIU T S, SULLIVAN J P, ASAI K, et al. Pressure and Temperature Sensitive Paints[M]. Cham: Springer, 2021: 40-52.
7 FUJII S, NUMATA D, NAGAI H, et al. Development of ultrafast-response anodized-aluminum pressure-sensitive paints[C]∥ 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
8 MCUMLLEN R M, HUYNH D P, GREGORY J, et al. Dynamic calibrations for fast-response porous polymer/ceramic pressure-sensitive paint[C]∥ AIAA Ground Testing Conference. Reston: AIAA, 2013.
9 AMAO Y, ASAI K, OKURA I, et al. Platinum porphyrin embedded in poly(1-trimethylsilyl-1-propyne)film as an optical sensor for trace analysis of oxygen[J]. Analyst2000125(11): 1911-1914.
10 PUKLIN E, CARLSON B, GOUIN S, et al. Ideality of pressure-sensitive paint. I. Platinum tetra(pentafluorophenyl)porphine in fluoroacrylic polymer[J]. Journal of Applied Polymer Science201577(13): 2795-2804.
11 GREGORY J, SAKAUE H, SULLIVAN J P. Unsteady pressure measurements in turbomachinery using porous pressure sensitive paint[C]∥ 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
12 GREGORY J, SAKAUE H, LIU T S, et al. Fast pressure-sensitive paints for flow and acoustic diagnostics[J]. Annual Review of Fluid Mechanics201446: 303-330.
13 王志栋, 金毕青, 李亚庆, 等. 高分子基质和光学-氧压敏感涂料性能的关系[J]. 武汉工程大学学报201537(3): 42-48.
  WANG Z D, JIN B Q, LI Y Q, et al. Relationship between polymer matrix and properties of pressure sensitive paints[J]. Journal of Wuhan Institute of Technology201537(3): 42-48 (in Chinese).
14 陈振华, 周晓龙, 张宗波, 等. 压力与温度敏感涂料用高分子粘结剂的研究进展[J]. 表面技术202049(5): 140-147.
  CHEN Z H, ZHOU X L, ZHANG Z B, et al. Research progress of polymer binders for pressure and temperature sensitive paints[J]. Surface Technology202049(5): 140-147 (in Chinese).
15 向星居, 熊红亮, 袁明磊, 等. 快响应PSP技术用于高超声速圆柱绕流的非定常压力测量[J]. 实验流体力学201529(3): 54-61.
  XIANG X J, XIONG H L, YUAN M L, et al. Unsteady pressure measurement around circular cylinder in hypersonic flows using fast response PSP[J]. Journal of Experiments in Fluid Mechanics201529(3): 54-61 (in Chinese).
16 张永存, 陈柳生, 阎莉, 等. 压敏涂料技术在风洞中的应用研究[J]. 实验流体力学201024(1): 74-78, 94.
  ZHANG Y C, CHEN L S, YAN L, et al. Investigation and application of pressure sensitive paint technique in wind tunnel test[J]. Journal of Experiments in Fluid Mechanics201024(1): 74-78, 94 (in Chinese).
17 PENG D, CHEN J W, JIAO L R, et al. A fast-responding semi-transparent pressure-sensitive paint based on through-hole anodized aluminum oxide membrane[J]. Sensors and Actuators A: Physical2018274: 10-18.
18 PENG D, GU F, LI Y Z, et al. A novel sprayable fast-responding pressure-sensitive paint based on mesoporous silicone dioxide particles[J]. Sensors and Actuators A: Physical2018279: 390-398.
19 高丽敏, 姜衡, 葛宁, 等. 正弦波型高频动态压力光学校准系统及其应用[J]. 航空学报202041(10): 123667.
  GAO L M, JIANG H, GE N, et al. A high frequency dynamic pressure optical calibration system based on sinusoidal wave and its application[J]. Acta Aeronautica et Astronautica Sinica202041(10): 123667 (in Chinese).
20 高丽敏, 姜衡, 葛宁, 等. 基于寿命法的压力敏感涂料静/动态特性实验[J]. 航空学报202142(3): 124120.
  GAO L M, JIANG H, GE N, et al. Experiment on static/dynamic characteristics of fast-response pressure sensitive paint based on lifetime method[J]. Acta Aeronautica et Astronautica Sinica202142(3): 124120 (in Chinese).
21 SHAO Y, CHEN L S, LIAO Q, et al. Characterization of response frequency for the pressure-sensitive paint based on fluorine-containing polymer matrixes using oscillating sound wave technique[J]. Sensors (Basel, Switzerland)202020(21): 6310.
22 曹光跃. 传感器原理及应用[M]. 北京: 化学工业出版社, 2010: 8-10.
  CAO G Y. Principle and application of sensor[M]. Beijing: Chemical Industry Press, 2010: 8-10 (in Chinese).
23 GREGORY J W, ASAI K, KAMEDA M, et al. A review of pressure-sensitive paint for high-speed and unsteady aerodynamics[J]. Proceedings of the Institution of Mechanical Engineers—Part G2008222(2): 249-290.
文章导航

/