Cf/Al复合材料复合编织结构T型件弯曲性能
收稿日期: 2022-05-24
修回日期: 2022-06-22
录用日期: 2022-07-21
网络出版日期: 2022-07-25
基金资助
国家自然科学基金(52165018);航空科学基金(2019ZF056013);江西省自然科学基金(20202ACBL204010)
Bending properties of composite braided structure T⁃shaped parts of Cf/Al composite material
Received date: 2022-05-24
Revised date: 2022-06-22
Accepted date: 2022-07-21
Online published: 2022-07-25
Supported by
National Natural Science Foundation of China(52165018);Aeronautical Science Foundation of China(2019ZF056013);Jiangxi Provincial Natural Science Foundation(20202ACBL204010)
以航空发动机中典型结构T型件为研究对象,选用三维五向(立板)和叠层缝合(底板)两种结构复合编织了T型件预制体,采用真空压力浸渗法制备了Cf/Al复合材料复合编织结构T型件。分别进行了室温和350 ℃条件下的两点弯曲试验,探究了不同温度下复合材料T型件的弯曲性能,分析了T型件微观组织特征、弯曲载荷-位移曲线、破坏形貌及其失效机制。结果表明:Cf/Al复合材料三维复合编织结构T型件微观组织无明显缺陷,且两种编织结构缝合较完整。室温条件下,T型件平均弯曲强度为384.2 MPa;350 ℃条件下,平均弯曲强度为204.6 MPa。其室温和350 ℃弯曲载荷-位移曲线呈现非线性特征,且都存在线性弹性阶段、塑性变形阶段、失效卸载阶段。复合材料弯曲失效后,没有碎裂和断裂,仍保持结构的完整性。但由于根部是由两种不同编织结构缝合而成以及根部圆角的存在,容易使根部产生应力集中,以致失效部位集中在根部。
李志文 , 蔡长春 , 余欢 , 徐志锋 , 王振军 , 李荣幸 . Cf/Al复合材料复合编织结构T型件弯曲性能[J]. 航空学报, 2023 , 44(10) : 427510 -427510 . DOI: 10.7527/S1000-6893.2022.27510
Taking the typical structural T-shaped parts of aero-engine as the research object, the preform of T-shaped parts was braided with three-dimensional five-dimensional (vertical plate) and laminated stitched (bottom plate) composite structures, and the composite braided structure T-shaped parts of Cf/Al composite material were formed by vacuum pressure infiltration method. Two-point bending experiments at room temperature and 350 ℃ were carried out to explore the bending properties of composite T-shaped parts at different temperatures, and the microstructure characteristics, bending load-displacement curves, fracture morphology and failure mechanism of T-shaped parts were analyzed. The results show that there is no obvious defect in the microstructure of three-dimensional composite braided structure T-shaped parts of Cf/Al composite material, and the stitching of the two braided structures is complete. At room temperature, the average bending strength of T-shaped parts is 384.2 MPa and at 350 ℃, the average bending strength is 204.6 MPa. The bending load-displacement curves at room temperature and 350 ℃ show nonlinear characteristics, and there are linear elastic stage, plastic deformation stage and failure unloading stage. After the bending failure, there is no fragmentation and fracture, and the structural integrity is still maintained. However, the root is stitched by two different braided structures and the root fillet exists, it is easy to produce stress concentration in the root, so that the failure part is concentrated in the root.
1 | 王继业, 姜大鹏, 郁丽, 等. 复合材料整流叶片设计与试验技术研究[J]. 航空动力, 2020(2): 68-70. |
WANG J Y, JIANG D P, YU L, et al. Design and experimental study of composite vanes[J]. Aerospace Power, 2020(2): 68-70 (in Chinese). | |
2 | 兰泽宇, 余欢, 徐志锋, 等. 不同编织结构Cf/Al复合材料高温压缩性能与失效机理[J]. 航空学报, 2021, 42(9): 424488. |
LAN Z Y, YU H, XU Z F, et al. High temperature compressive properties and failure mechanism of Cf/Al composites with different braided structures[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 424488 (in Chinese). | |
3 | 刘艺. 连续碳纤维增强铝基复合材料制备工艺研究[D]. 汉中: 陕西理工大学, 2020. |
LIU Y. Study on preparation technology of continuous carbon fiber reinforced aluminum matrix composite[D]. Hanzhong: Shaanxi University of Technology, 2020 (in Chinese). | |
4 | 陈宝林, 周计明, 韩立军, 等. Cf/Al复合材料异形件预制体制备及其力学性能研究[J]. 精密成形工程, 2020, 12(3): 88-94. |
CHEN B L, ZHOU J M, HAN L J, et al. Preparation and mechanical properties of preform for special-shaped parts of Cf/Al composite[J]. Journal of Netshape Forming Engineering, 2020, 12(3): 88-94 (in Chinese). | |
5 | GAO X H, YUAN L, FU Y T, et al. Prediction of mechanical properties on 3D braided composites with void defects[J]. Composites Part B: Engineering, 2020, 197: 108164. |
6 | FU Y T, GAO X H, YAO X F. Mesoscopic simulation on curing deformation and residual stresses of 3D braided composites[J]. Composite Structures, 2020, 246: 112387. |
7 | PEI X Y, CHEN L, LI J L, et al. Effect of damage on the vibration modal of a novel three-dimensional and four-directional braided composite T-beam[J]. Composites Part B: Engineering, 2016, 86: 108-119. |
8 | ZHOU H L, HU D M, ZHANG W, et al. The transverse impact responses of 3-D braided composite I-beam[J]. Composites Part A: Applied Science and Manufacturing, 2017, 94: 158-169. |
9 | 吴海, 肖加余, 邢素丽, 等. 含诱导缺陷复合材料T型接头的弯曲失效实验[J]. 国防科技大学学报, 2015, 37(4): 128-136. |
WU H, XIAO J Y, XING S L, et al. The failure experiment of composite T-joints with induced defects under bending load[J]. Journal of National University of Defense Technology, 2015, 37(4): 128-136 (in Chinese). | |
10 | 华勇杰. 碳纤维增强复合材料T型接头脱层失效机理研究[D]. 广州: 暨南大学, 2014: 53. |
HUA Y J. Delamination failure mechanism of carbon fiber reinforced composite T-joints[D]. Guangzhou: Jinan University, 2014: 53 (in Chinese). | |
11 | 齐红宇, 王天龙, 梁晓波, 等. 弯曲载荷下机织复合材料T型接头渐进失效分析[J]. 复合材料学报, 2016, 33(6): 1161-1167. |
QI H Y, WANG T L, LIANG X B, et al. Progressive failure analysis of woven composite T-joints under bending load[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1161-1167 (in Chinese). | |
12 | 王帅, 陈梦熊, 李伟东, 等. RTM成型非对称复合材料T型接头的拉伸失效机制[J]. 复合材料学报, 2023, 40(1): 613-624. |
WANG S, CHEN M X, LI W D, et al. Tensile failure mechanism of RTM-made asymmetric composite T-joint[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 613-624 (in Chinese). | |
13 | 刘军, 刘奎, 宁博, 等. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12): 57-62. |
LIU J, LIU K, NING B, et al. Bending properties of three-dimensional braided composite T-beam at low temperature[J]. Journal of Textile Research, 2019, 40(12): 57-62 (in Chinese). | |
14 | ORIFICI A C, SHAH S A, HERSZBERG I, et al. Failure analysis in postbuckled composite T-sections[J]. Composite Structures, 2008, 86(1-3): 146-153. |
15 | RAVENHALL R, KOOP W. Metal matrix composite fan blade development[C]∥ 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
16 | 王燚林, 刘天生, 刘东, 等. 航空发动机复合材料静子叶片研究进展[J]. 玻璃钢/复合材料, 2018(12): 96-101. |
WANG Y L, LIU T S, LIU D, et al. Research progress of aeroengine composite stator blades[J]. Fiber Reinforced Plastics/Composites, 2018(12): 96-101 (in Chinese). | |
17 | 余坤, 文立伟, 宦华松. 缝合复合材料T型加筋壁板的抗剪与抗弯性能[J]. 材料导报, 2021, 35(16): 16190-16194. |
YU K, WEN L W, HUAN H S. Shearing and bending performance of stitched composite T-stiffened panel[J]. Materials Reports, 2021, 35(16): 16190-16194 (in Chinese). | |
18 | WANG Z J, WANG Z Y, XIONG B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading[J]. Journal of Alloys and Compounds, 2020, 815: 152459. |
19 | 余欢. 铸造工艺学[M]. 北京: 机械工业出版社, 2019: 188. |
YU H. Foundry technology[M]. Beijing: China Machine Press, 2019: 188 (in Chinese). | |
20 | 彭辉权, 蔡长春, 余欢, 等. 内外部缺口对三维正交M40J/Al复合材料力学性能的影响[J]. 特种铸造及有色合金, 2022, 42(1): 87-92. |
PENG H Q, CAI C C, YU H, et al. Effects of internal and external notches on mechanial properties of three-dimensional orthogonal M40J/Al composites[J]. Special Casting and Nonferrous Alloys, 2022, 42(1): 87-92 (in Chinese). | |
21 | 徐鹏. 3D-Cf/Al复合材料真空气压浸渗工艺研究[D]. 南昌: 南昌航空大学, 2015: 43. |
XU P. Study on process of 3D-Cf/Al composites manufactured vacuum pressure infiltration[D]. Nanchang: Nanchang Hangkong University, 2015: 43 (in Chinese). | |
22 | 胡银生, 余欢, 徐志锋, 等. 增强纤维对连续纤维增强铝基复合材料界面和力学性能的影响[J]. 中国有色金属学报, 2019, 29(10): 2245-2254. |
HU Y S, YU H, XU Z F, et al. Effect of reinforcing fiber on interface and mechanical properties of fiber reinforced aluminum matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(10): 2245-2254 (in Chinese). | |
23 | 帅亮, 余欢, 徐志锋, 等. 三维五向Cf/Al复合材料不同温度下的轴向弯曲变形力学行为[J]. 材料导报, 2020, 34(20): 20137-20142. |
SHUAI L, YU H, XU Z F, et al. Mechanical behavior of three-dimensional five-directional Cf/Al composites under axial bending deformation at different temperatures[J]. Materials Reports, 2020, 34(20): 20137-20142 (in Chinese). | |
24 | 冯景鹏, 余欢, 徐志锋, 等. 叠层穿刺结构Cf/Al复合材料的弯曲性能及失效分析[J]. 中国有色金属学报, 2020, 30(11): 2597-2604. |
FENG J P, YU H, XU Z F, et al. Bending properties and failure analysis of laminated puncture structural Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(11): 2597-2604 (in Chinese). | |
25 | 吴志生, 靳鹏飞, 高珊, 等. 铝合金焊接接头的软化及改善措施[J]. 焊接技术, 2010, 39(1): 1-3, 11. |
WU Z S, JIN P F, GAO S, et al. Softening of aluminum alloy welded joints and improvement measures[J]. Welding Technology, 2010, 39(1): 1-3, 11 (in Chinese). | |
26 | 胡银生, 余欢, 徐志锋, 等. 2.5D-Cf/Al复合材料的经向高温力学性能及其变形断裂行为[J]. 中国有色金属学报, 2020, 30(3): 507-517. |
HU Y S, YU H, XU Z F, et al. High temperature mechanical properties and deformation fracture behavior in warp direction of 2.5-Cf/Al composites[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 507-517 (in Chinese). | |
27 | 李仲平, 冯志海, 徐樑华, 等. 我国高性能纤维及其复合材料发展战略研究[J]. 中国工程科学, 2020, 22(5): 28-36. |
LI Z P, FENG Z H, XU L H, et al. Development strategies for China’s high-performance fibers and their composites[J]. Strategic Study of CAE, 2020, 22(5): 28-36 (in Chinese). | |
28 | 廖晓玲, 李贺军, 李新涛, 等. 3D-C/C复合材料的弯曲行为[J]. 材料工程, 2006, 34(6): 54-57. |
LIAO X L, LI H J, LI X T, et al. Flexural behavior of 3D-C/C composites[J]. Journal of Materials Engineering, 2006, 34(6): 54-57 (in Chinese). |
/
〈 |
|
〉 |