流体力学与飞行力学

特征值理论在稳定性预测中的应用研究进展

  • 孙晓峰 ,
  • 董旭 ,
  • 张光宇 ,
  • 王卓 ,
  • 孙大坤
展开
  • 1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
    2. 北京航空航天大学 航空发动机研究院, 北京 100191

收稿日期: 2022-05-10

  修回日期: 2022-05-23

  网络出版日期: 2022-07-21

基金资助

军委科技发展部预研管理中心重点实验室基金资助项目(6142702200101)

Progress review of application of eigenvalue theory to stability prediction

  • SUN Xiaofeng ,
  • DONG Xu ,
  • ZHANG Guangyu ,
  • WANG Zhuo ,
  • SUN Dakun
Expand
  • 1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. Research Institute of Aero-Engine, Beihang University, Beijing 100191, China

Received date: 2022-05-10

  Revised date: 2022-05-23

  Online published: 2022-07-21

Supported by

Key Laboratory of Pre-Research Management Center (6142702200101)

摘要

航空发动机三大主要部件风扇/压气机、燃烧室和涡轮的稳定工作范围直接决定了发动机整机的性能和稳定性,在追求高气动性能、高涡轮前温度和低排放的同时,主要部件的气动、气弹和燃烧稳定性问题变得尤为突出。基于经验的稳定性预估方法已不适用于现代航空发动机一体化的设计思想,发展快速、准确的稳定性评估方法和稳定性控制技术并将其纳入发动机设计流程具有重要的理论和工程价值。本文主要综述了基于小扰动方法和特征值理论发展的多种半解析模型的研究进展,该方法在设计阶段可以有效评估风扇/压气机气动稳定性、预测叶片颤振和主/加力燃烧室热声不稳定性,为进一步开展稳定性控制设计提供了基础,且为节约实验和数值成本,建立发动机一体化设计方法提供了可能。

本文引用格式

孙晓峰 , 董旭 , 张光宇 , 王卓 , 孙大坤 . 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022 , 43(10) : 527408 -527408 . DOI: 10.7527/S1000-6893.2022.27408

Abstract

The stable operating ranges of the fan/compressor, combustor and turbine of the aero-engine directly determine the performance and stability of the engine. While pursuing high aerodynamic performance, high turbine temperature and low emission, the aerodynamic, aeroelastic and combustion stability problems of the main components become particularly prominent. It is of great theoretical and engineering values to develop rapid and accurate stability assessment methods and stability control techniques and incorporate them into the engine design process. This paper gives a review of the research progress of a variety of semi-analytical models developed based on the small perturbation method and the eigenvalue theory. These methods can effectively evaluate the fan/compressor aerodynamic instability and predict the flutter and main/afterburner combustor thermal instability in the design phase. On this basis, the further stability control design can be conducted to save the cost of experiments and simulations.

参考文献

[1] VAHDATI M, LEE K B, SURESHKUMAR P. A review of computational aeroelasticity of civil fan blades[J]. International Journal of Gas Turbine, Propulsion and Power Systems, 2020, 11(4):22-35.
[2] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5):879-886.
[3] FLOREA R, HALL K C, CIZMAS P G A. Reduced-order modeling of unsteady viscous flow in a compressor cascade[J]. AIAA Journal, 1998, 36(6):1039-1048.
[4] DIPRIMA R C, STUART J T. Hydrodynamic stability[J]. Journal of Applied Mechanics, 1983, 50(4b):983-991.
[5] CHANDRASEKHAR S. Hydrodynamic and hydromagnetic stability[M]. New York:Dover Publications, 1981.
[6] LIN C C. The theory of hydrodynamic stability[M]. London:Cambridge University Press, 1955.
[7] HE L. Computational study of rotating-stall inception in axial compressors[J]. Journal of Propulsion and Power, 1997, 13(1):31-38.
[8] GONG Y. A computational model for rotating stall and inlet distortions in multistage compressors[D]. Cambridge:Massachusetts Institute of Technology, 1999.
[9] CHIMA R V. A three-dimensional unsteady CFD model of compressor stability[C]//Proceedings of ASME Turbo Expo 2006:Power for Land, Sea, and Air, 2008:1157-1168.
[10] HOYING D A, TAN C S, VO H D, et al. Role of blade passage flow structurs in axial compressor rotating stall inception[J]. Journal of Turbomachinery, 1999, 121(4):735-742.
[11] VO H D, TAN C S, GREITZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery, 2008, 130(1):155-165.
[12] DAVIS R L, YAO J X. Computational approach for predicting stall inception in multistage axial compressors[J]. Journal of Propulsion and Power, 2007, 23(2):257-265.
[13] ADAMCZYK J J, CELESTINA M L, GREITZER E M. The role of tip clearance in high-speed fan stall[J]. Journal of Turbomachinery, 1993, 115(1):28-38.
[14] CHEN J P, JOHNSON B P, HATHAWAY M D, et al. Flow characteristics of tip injection on compressor rotating spike via time-accurate simulation[J]. Journal of Propulsion and Power, 2009, 25(3):678-687.
[15] CHEN J P, HATHAWAY M D, HERRICK G P. Pre-stall behavior of a transonic axial compressor stage via time-accurate numerical simulation[J]. Journal of Turbomachinery, 2008, 130(4):353-368.
[16] EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Journal of Fluids Engineering, 1955, 77(4):455-467.
[17] STENNING A H. Rotating stall and surge[J]. Journal of Fluids Engineering, 1980, 102(1):14-20.
[18] SEARS W R. Rotating stall in axial compressors[J]. Zeitschrift für angewandte Mathematik und Physik, 1955, 6(6):429-455.
[19] NENNI J, LUDWIG G. A theory to predict the inception of rotating stall in axial flow compressors[C]//7th Fluid and PlasmaDynamics Conference. Reston:AIAA, 1974.
[20] BONNAURE L P. Modelling high speed multistage compressor stability[D]. Cambridge:Massachusetts Institute of Technology, 1991.
[21] GREITZER E M. Surge and rotating stall in axial flow compressors-part I:Theoretical compression system model[J]. Journal of Engineering for Power, 1976, 98(2):190-198.
[22] GREITZER E M. Surge and rotating stall in axial flow compressors-part II:Experimental results and comparison with theory[J]. Journal of Engineering for Power, 1976, 98(2):199-211.
[23] MOORE F K, GREITZER E M. A theory of post-stall transients in axial compression systems:part I-Development of equations[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(1):68-76.
[24] GREITZER E M, MOORE F K. A theory of post-stall transients in axial compression systems:part II-Application[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(2):231-239.
[25] GORDON K. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressors[D]. Cambridge:Massachusetts Institute of Technology, 1999.
[26] SUN X F. On the relation between the inception of rotating stall and casing treatment[C]//32nd Joint Propulsion Conference and Exhibit. Reston:AIAA, 1996.
[27] SUN X F, SUN D K, YU W W. A model to predict stall inception of transonic axial flow fan/compressors[J]. Chinese Journal of Aeronautics, 2011, 24(6):687-700.
[28] 于巍巍. 跨音风扇/压气机稳定性预测与扩稳机理研究[D]. 北京:北京航空航天大学, 2006. YU W W. Study on stability prediction and stability expansion mechanism of transonic fan/compressor[D]. Beijing:Beihang University, 2006 (in Chinese).
[29] 侯睿伟. 风扇/压气机流动稳定性模型及扩稳方法研究[D]. 北京:北京航空航天大学, 2010. HOU R W. Flow stability model for fan/compressor and experimental investigations to improve the stall margin[D]. Beijing:Beihang University, 2010 (in Chinese).
[30] 刘小华. 叶轮机流动稳定性通用理论与非定常机匣处理扩稳研究[D]. 北京:北京航空航天大学, 2013. LIU X H. General theory of turbine flow stability and research on unsteady casing treatment and stability expansion[D]. Beijing:Beihang University, 2013 (in Chinese).
[31] 陈懋章. 粘性流体动力学理论及紊流工程计算[M]. 北京:北京航空学院出版社, 1986. CHEN M Z. Viscous fluid dynamics theory and turbulent engineering calculation[M]. Beijing:Beijing Institute of Aeronautics Press, 1986 (in Chinese).
[32] MALIK M R. Finite-difference solution of the compressible stability eigenvalue problem:NASA Contractor Report 3584[R].Washington, D.C.:NASA, 1982.
[33] HE C, MA Y F, LIU X H, et al. Aerodynamic instabilities of swept airfoil design in transonic axial-flow compressors[J]. AIAA Journal, 2018, 56(5):1878-1893.
[34] HELMING K. Numerical analysis of sweep effects in shrouded propfan rotors[J]. Journal of Propulsion and Power, 1996, 12(1):139-145.
[35] HAH C, WENNERSTROM A J. Three-dimensional flowfields inside a transonic compressor with swept blades[J]. Journal of Turbomachinery, 1991, 113(2):241-250.
[36] WADIA A R, SZUCS P N. Inner workings of aerodynamic sweep[J]. Journal of Turbomachinery, 1998, 120(4):671-682.
[37] XU D K, DONG X, ZHOU C H, et al. Effect of rotor axial blade loading distribution on compressor stability[J]. Aerospace Science and Technology, 2021, 119:107230.
[38] THEODORSEN T. General theory of aerodynamic instability and the mechanism of flutter[J]. Journal of the Franklin Institute, 1935, 219(6):766-767.
[39] DOWELL E. A modern course in aeroelasticity[M]. 5th ed. Switzerland:Springer, 2015.
[40] WHITEHEAD D. Force and moment coefficient for vibrating aerofoils in cascade:R&M No.3254[R]. London:Aeronautical Research Council, 1960.
[41] BENDIKSEN O O, FRIEDMANN P P. The effect of bending-torsion coupling on fan and compressor blade flutter[J]. Journal of Engineering for Power, 1982, 104(3):617-623.
[42] KIELB R E, KAZA K R V. Flutter of swept fan blades[J]. Journal of Engineering for Gas Turbines and Power, 1985, 107(2):394-398.
[43] KIELB R E, RAMSEY J K. Flutter of a fan blade in supersonic axial flow[J]. Journal of Turbomachinery, 1989, 111(4):462-467.
[44] MARSHALL J G, IMREGUN M. A review of aeroelasticity methods with emphasis on turbomachinery applications[J]. Journal of Fluids and Structures, 1996, 10(3):237-267.
[45] CARTA F O. Coupled blade-disk-shroud flutter instabilities in turbojet engine rotors[J]. Journal of Engineering for Power, 1967, 89(3):419-426.
[46] WHITEHEAD D. Bending flutter of unstalled cascade blades at finite deflectio:R&M No.3386[R]. London:Aeronautical Research Council, 1962.
[47] WHITEHEAD D. Torsional flutter of unstalled cascade blades at zero deflectio:R&M No.3431[R]. London:Aeronautical Research Council, 1966.
[48] SUN Y, WANG X Y, DU L, et al. On the role of acoustic reflections from duct boundaries in fan flutter[J]. Journal of Sound and Vibration, 2020, 483:115465.
[49] VAHDATI M, SMITH N, ZHAO F Z. Influence of intake on fan blade flutter[J]. Journal of Turbomachinery, 2015, 137(8):081002.
[50] HALL K C, CRAWLEY E F. Calculation of unsteady flows in turbomachinery using the linearized Euler equations[J]. AIAA Journal, 1989, 27(6):777-787.
[51] HE L, NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal, 1998, 36(11):2005-2012.
[52] HALL K C, THOMAS J P, CLARK W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique[J]. AIAA Journal, 2002, 40(5):879-886.
[53] CLARK S. Design for coupled-mode flutter and non-synchronous vibration in turbomachinery[D]. Durham:Duke University, 2013.
[54] WANG D X, HUANG X Q. Solution stabilization and convergence acceleration for the harmonic balance equation system[J]. Journal of Engineering for Gas Turbines and Power (Transactions of the ASME), 2017, 139(9):092503.
[55] HUANG H, LIU W, PETRIE-REPAR P, et al. An efficient aeroelastic eigenvalue method for analyzing coupled-mode flutter in turbomachinery[J]. Journal of Turbomachinery, 2021, 143(2):021010.
[56] DU P C, NING F F. Simulating periodic unsteady flows using cubic-spline based time collocation method[C]//Proceedings of ASME Turbo Expo 2013:Turbine Technical Conference and Exposition, 2013.
[57] SANDBERG R D, MICHELASSI V. Fluid dynamics of axial turbomachinery:blade- and stage-level simulations and models[J]. Annual Review of Fluid Mechanics, 2022, 54:255-285.
[58] CASONI M, BENINI E. A review of computational methods and reduced order models for flutter prediction in turbomachinery[J]. Aerospace, 2021, 8(9):242.
[59] WANG D X, HUANG X Q. A complete rotor-stator coupling method for frequency domain analysis of turbomachinery unsteady flow[J]. Aerospace Science and Technology, 2017, 70:367-377.
[60] CHAHINE C, VERSTRAETE T, HE L. A comparative study of coupled and decoupled fan flutter prediction methods under variation of mass ratio and blade stiffness[J]. Journal of Fluids and Structures, 2019, 85:110-125.
[61] MOFFATT S, HE L. On decoupled and fully-coupled methods for blade forced response prediction[J]. Journal of Fluids and Structures, 2005, 20(2):217-234.
[62] ZHONG G H, SUN X F. New simulation strategy for an oscillating cascade in turbomachinery using immersed-boundary method[J]. Journal of Propulsion and Power, 2009, 25(2):312-321.
[63] VAHDATI M, SAYMA A I, MARSHALL J G, et al. Mechanisms and prediction methods for fan blade stall flutter[J]. Journal of Propulsion and Power, 2001, 17(5):1100-1108.
[64] BRANDSTETTER C, JVNGST M, SCHIFFER H P. Measurements of radial vortices, spill forward, and vortex breakdown in a transonic compressor[J]. Journal of Turbomachinery, 2018, 140(6):061004.
[65] HOLZINGER F, WARTZEK F, JVNGST M, et al. Self-excited blade vibration experimentally investigated in transonic compressors:rotating instabilities and flutter[J]. Journal of Turbomachinery, 2016, 138(4):041006.
[66] VAHDATI M, SIMPSON G, IMREGUN M. Mechanisms for wide-chord fan blade flutter[J]. Journal of Turbomachinery, 2011, 133(4):041029.
[67] STAPELFELDT S, VAHDATI M. Improving the flutter margin of an unstable fan blade[J]. Journal of Turbomachinery, 2019, 141(7):071006.
[68] LEE K B, WILSON M, VAHDATI M. Numerical study on aeroelastic instability for a low-speed fan[J]. Journal of Turbomachinery, 2017, 139(7):071004.
[69] STAPELFELDT S, BRANDSTETTER C. Non-synchronous vibration in axial compressors:Lock-in mechanism and semi-analytical model[J]. Journal of Sound and Vibration, 2020, 488:115649.
[70] RAYLEIGH J W S. The theory of sound[M]. 2nd ed. London:Macmillan, 1896.
[71] PURWAR N, MEINDL M, POLIFKE W. Comparison of model order reduction methods in thermo-acoustic stability analysis[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(2):021004.
[72] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors part I:Fundamentals. low frequency instability with monopropellants[J]. Journal of the American Rocket Society, 1951, 21(6):163-178.
[73] DOWLING A P. Nonlinear self-excited oscillations of a ducted flame[J]. Journal of Fluid Mechanics, 1997, 346:271-290.
[74] NOIRAY N, DUROX D, SCHULLER T, et al. A unified framework for nonlinear combustion instability analysis based on the flame describing function[J]. Journal of Fluid Mechanics, 2008, 615:139-167.
[75] DOWLING A P. The calculation of thermoacoustic oscillations[J]. Journal of Sound and Vibration, 1995, 180(4):557-581.
[76] POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36(1):1-28.
[77] BELLUCCI V, FLOHR P, PASCHEREIT C O, et al. On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2):271-275.
[78] STOW S R, DOWLING A P. Modelling of circumferential modal coupling due to Helmholtz resonators[C]//Proceedings of ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference, 2003:129-137.
[79] LAHIRI C, BAKE F. A review of bias flow liners for acoustic damping in gas turbine combustors[J]. Journal of Sound and Vibration, 2017, 400:564-605.
[80] ELDREDGE J D, DOWLING A P. The absorption of axial acoustic waves by a perforated liner with bias flow[J]. Journal of Fluid Mechanics, 2003, 485:307-335.
[81] RUPP J, CARROTTE J, MACQUISTEN M. The use of perforated damping liners in aero gas turbine combustion systems[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(7):
[82] LI L, GUO Z H, ZHANG C Y, et al. A passive method to control combustion instabilities with perforated liner[J]. Chinese Journal of Aeronautics, 2010, 23(6):623-630.
[83] NAMBA M, FUKUSHIGE K. Application of the equivalent surface source method to the acoustics of duct systems with non-uniform wall impedance[J]. Journal of Sound and Vibration, 1980, 73(1):125-146.
[84] WANG X Y, SUN X F. A new segmentation approach for sound propagation in non-uniform lined ducts with mean flow[J]. Journal of Sound and Vibration, 2011, 330(10):2369-2387.
[85] ZHANG G Y, WANG X Y, LI L, et al. Effects of perforated liners on controlling combustion instabilities in annular combustors[J]. AIAA Journal, 2020, 58(7):3100-3114.
[86] ZHANG G Y, WANG X Y, LI L, et al. Control of thermoacoustic instability with a drum-like silencer[J]. Journal of Sound and Vibration, 2017, 406:253-276.
[87] ZHANG G, WANG X, JING X, et al. Control effects of perforated liners on the combustion instability in an annular combustor[C]//GPPS Global, 2019.
[88] QIN L, WANG X Y, ZHANG G Y, et al. Effect of nonlinear flame response on the design of perforated liners in suppression of combustion instability[J]. Journal of Sound and Vibration, 2021, 511:116314.
文章导航

/