流体力学与飞行力学

基于降阶模型和梯度优化的流场加速收敛方法

  • 曹文博 ,
  • 刘溢浪 ,
  • 张伟伟
展开
  • 西北工业大学 航空学院,西安  710072

收稿日期: 2022-03-01

  修回日期: 2022-04-24

  录用日期: 2022-07-14

  网络出版日期: 2022-07-21

基金资助

国家自然科学基金(92152301)

Accelerated convergence method for fluid dynamics solvers based on reduced⁃order model and gradient optimization

  • Wenbo CAO ,
  • Yilang LIU ,
  • Weiwei ZHANG
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China

Received date: 2022-03-01

  Revised date: 2022-04-24

  Accepted date: 2022-07-14

  Online published: 2022-07-21

Supported by

National Natural Science Foundation of China(92152301)

摘要

CFD是解决流体相关复杂工程问题的重要手段,随着流体力学研究和工程应用问题的日益复杂,更高效、精确的CFD算法研究至关重要。提出了一种基于降阶模型(ROM)和梯度优化用于加速稳态流场的收敛方法。该方法首先收集CFD迭代求解过程中的流场快照构造基于正交分解(POD)的降阶模型,然后使用梯度优化方法求解降阶模型得到残差更低的流场,最后以该流场为初值继续进行CFD迭代求解从而加速CFD的收敛过程。将该方法用于基于有限体积法的CFD求解器中,针对无黏、湍流算例验证了所提加速收敛方法的有效性。结果表明,加速收敛方法相比于初始CFD方法迭代步数能显著减少2~3倍,是一种高效且鲁棒的加速收敛方法,且在复杂工程问题中具有广泛的应用前景。

本文引用格式

曹文博 , 刘溢浪 , 张伟伟 . 基于降阶模型和梯度优化的流场加速收敛方法[J]. 航空学报, 2023 , 44(6) : 127090 -127090 . DOI: 10.7527/S1000-6893.2022.27090

Abstract

Computational Fluid Dynamics(CFD)is an important method to solve fluid-related complex engineering problems. The increasing complexity of fluid mechanics research and engineering applications makes it imperative to explore a more efficient and accurate CFD algorithm. A method based on reduced-order model and gradient optimization is proposed to accelerate the convergence process of fluid dynamics solvers. In this method,the reduced-order model is constructed by the snapshots collected from the iterative process of CFD solvers,and the gradient optimization method is then used to minimize the residual of the reduced-order model. Finally,the flow field with lower residual is selected as the initial condition of the CFD solver to accelerate the convergence process of CFD. The method is applied to the CFD solver based on the finite volume method,and the effectiveness of the proposed method is studied for inviscid and turbulence fluids. The results show that the accelerated convergence method can significantly reduce the number of iterative steps by 2⁃3 times compared with the initial CFD method,exhibiting efficiency,robustness,and a wide application prospect in complex engineering problems.

参考文献

1 JAMESON A, BAKER T J. Solution of the Euler equations for complex configurations[C]∥ 6th Computational Fluid Dynamics Conference Danvers. Reston: AIAA, 1983.
2 GHIA U, GHIA N K, SHIN T C, et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. Journal of Computational Physics198248(3): 387-411.
3 JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥ 14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981.
4 TURKEL E. Preconditioned methods for solving the incompressible and low speed compressible equations[J]. Journal of Computational Physics198772(2): 277-298.
5 WYNN P. Acceleration techniques for iterated vector and matrix problems[J]. Mathematics of Computation196216(79): 301-322.
6 BREZINSKI C. Generalisations de la transformation de shanks,de la table de Pade et de l'ε-algorithme[J]. Calcolo197512(4): 317-360.
7 CABAY S, JACKSON L W. A polynomial extrapolation method for finding limits and antilimits of vector sequences[J]. SIAM Journal on Numerical Analysis197613(5): 734-752.
8 EDDY R P. Extrapolating to the limit of a vector sequence[J]. Information Linkage Between Applied Mathematics and Industry1979: 387-396.
9 MESINA M. Convergence acceleration for the iterative solution of the equations X=AX+f[J]. Computer Methods in Applied Mechanics and Engineering197710(2): 165-173.
10 SMITH D A, FORD W F, SIDI A. Extrapolation methods for vector sequences[J]. SIAM Review198729(2): 199-233.
11 SIDI A. Review of two vector extrapolation methods of polynomial type with applications to large-scale problems[J]. Journal of Computational Science20123(3): 92-101.
12 ARNOLDI W E. The principle of minimized iterations in the solution of the matrix eigenvalue problem[J]. Quarterly of Applied Mathematics19519(1): 17-19.
13 SAAD Y, SCHULTZ M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing19867(3): 856-869.
14 HAFEZ M, PARLETTE E, SALAS M. Convergence acceleration of iterative solutions of Euler equations for transonic flow computations[J]. Computational Mechanics19861(3): 165-176.
15 DJEDDI R, KAMINSKY A, EKICI K. Convergence acceleration of fluid dynamics solvers using a reduced-order model[J]. AIAA Journal201755(9): 3059-3071.
16 SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics2010656: 5-28.
17 SCHMID P J, LI L, JUNIPER M P,et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics201125(1): 249-259.
18 LIU Y, WANG G, YE Z Y. Dynamic mode extrapolation to improve the efficiency of dual time stepping method[J]. Journal of Computational Physics2018352:190-212.
19 ANDERSSON N. A non-intrusive acceleration technique for compressible flow solvers based on dynamic mode decomposition[J]. Computers & Fluids2016133: 32-42.
20 LIU Y, ZHANG W, KOU J. Mode multigrid-a novel convergence acceleration method[J]. Aerospace Science and Technology201992: 605-619.
21 TAN S L, LIU Y L, KOU J Q, et al. Improved mode multigrid method for accelerating turbulence flows[J]. AIAA Journal202159(8): 3012-3024.
22 LUCIA D J, BERAN P S, SILVA W A. Reduced-order modeling:New approaches for computational physics[J]. Progress in Aerospace Sciences200440(1-2): 51-117.
23 BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics199325: 539-575.
24 HALL K C, THOMAS J P, DOWELL E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal200038(10): 1853-1862.
25 DOWELL E H, THOMAS J P, HALL K C. Transonic limit cycle oscillation analysis using reduced order aerodynamic models[J]. Journal of Fluids and Structures200419(1): 17-27.
26 LUCIA D J, BERAN P S, KING P I. Reduced-order modeling of an elastic panel in transonic flow[J]. Journal of Aircraft200340(2): 338-347.
27 MARKOVINOVI? R, JANSEN J D. Accelerating iterative solution methods using reduced-order models as solution predictors[J]. International Journal for Numerical Methods in Engineering200668(5): 525-541.
28 TROMEUR-DERVOUT D, Vassilevski Y. POD acceleration of fully implicit solver for unsteady nonlinear flows and its application on grid architecture[J]. Advances in Engineering Software200738(5): 301-311.
29 GRINBERG L, KARNIADAKIS G E. Extrapolation-based acceleration of iterative solvers: Application to simulation of 3D flows[J]. Communications in Computational Physics20119(3): 607-626.
30 RAPúN M L, VEGA J M. Reduced order models based on local POD plus Galerkin projection[J]. Journal of Computational Physics2010229(8): 3046-3063.
31 CLAINCHE L S, VARAS F, Francisco J H V, et al. Accelerating oil reservoir simulations using POD on the fly[J]. International Journal for Numerical Methods in Engineering2017110(1): 79-100.
32 TERRAGNI F, VALERO E, VEGA J M. Local POD plus Galerkin projection in the unsteady lid-driven cavity problem[J]. SIAM Journal on Scientific Computing201133(6): 3538-3561.
33 RAPúN M L, TERRAGNI F, VEGA J M. Adaptive POD-based low-dimensional modeling supported by residual estimates[J]. International Journal for Numerical Methods in Engineering2015104(9): 844-868.
34 TERRAGNI F, VEGA J M. Construction of bifurcation diagrams using POD on the fly[J]. SIAM Journal on Applied Dynamical Systems201413(1): 339-365.
35 BERGMANN M, BRUNEAU C H, IOLLO A. Enablers for robust POD models[J]. Journal of Computational Physics2009228(2): 516-538.
36 BALAJEWICZ M, DOWELL E H. Stabilization of projection-based reduced order models of the Navier-Stokes[J]. Nonlinear Dynamics201270(2): 1619-1632.
文章导航

/