空间X射线反射式聚焦系统的同步辐射表征技术
收稿日期: 2022-05-07
修回日期: 2022-06-04
录用日期: 2022-07-08
网络出版日期: 2022-07-14
基金资助
国家自然科学基金(11775295);上海市自然科学基金(21ZR1471500);中国科学院青年创新促进会(2018295)
Characterization of space X-ray reflective focusing system by using synchrotron radiation facility
Received date: 2022-05-07
Revised date: 2022-06-04
Accepted date: 2022-07-08
Online published: 2022-07-14
Supported by
National Natural Science Foundation of China(11775295);Natural Science Foundation of Shanghai of China(21ZR1471500);the Funds from the Youth Innovation Promotion Association, CAS(2018295)
针对脉冲星观测与计时导航等领域对空间X射线望远镜测试与标定的迫切需求,综述了目前国内外基于同步辐射和X射线自由电子激光光源发展的多种高精度的反射式聚焦系统的面形检测、系统标定和反射率计量测量技术。着重介绍了细光束、哈特曼波前传感器、光栅干涉、近场散斑等面形测试方法在不同尺度和面形的反射镜在线测量中的应用,阐明了其在工程应用中的优劣。介绍了同步辐射装置在空间X射线望远镜的在线成像和校准以及反射率计量上已开展的卓有成效工作。期望通过相关综述介绍,可以推广空间X射线望远镜反射元件广泛利用同步辐射等大科学装置进行性能表征实验,以此促进相关领域的进一步发展。国内同步辐射大科学装置的建立和蓬勃发展为大尺度空间X射线望远镜的在线检测、校准和光学性能表征提供了重要支撑。
田纳玺 , 谢佳男 , 蒋晖 , 杨宇 . 空间X射线反射式聚焦系统的同步辐射表征技术[J]. 航空学报, 2023 , 44(3) : 527386 -527386 . DOI: 10.7527/S1000-6893.2022.27386
Considering the urgent demand for the testing and calibration of X-ray space telescope in the fields of pulsar observation and timing navigation, this review summarizes various high-precision wavefront and mirror figure detection, system calibration and reflectivity test techniques using synchrotron radiation and free electron laser facilities. Some important at-wavelength metrologies for testing reflective mirrors with different scales and surface shapes, such as pencil beam, Hartmann sensor, grating interferometer and near-field speckle techniques, are introduced and compared. The current application of synchrotron radiation facility in at-wavelength imaging, calibration and reflectivity measurement of X-ray space telescope is also presented. The characterization of space telescope based on synchrotron radiation is hoped to be widely developed, so as to promote further progress of related fields. The blooming synchrotron radiation facilities provide potential strong support for wavelength detection, calibration and optical performance characterization for large-scale X-ray space telescope.
1 | HUDEC R. Kirkpatrick-baez (KB) and lobster eye (LE) optics for astronomical and laboratory applications[J]. X-Ray Optics and Instrumentation, 2010, 2010: 139148. |
2 | 杨鹏, 伍凡, 侯溪, 等. 基于ZEMAX的Fizeau干涉仪模型[J]. 光电工程, 2010, 37(11): 98-102. |
YANG P, WU F, HOU X, et al. Fizeau interferometer model base on ZEMAX[J]. Opto-Electronic Engineering, 2010, 37(11): 98-102 (in Chinese). | |
3 | LI H Z, LI X D, GRINDEL M W, et al. Measurement of X-ray telescope mirrors using a vertical scanning long trace profiler[J]. Optical Engineering, 1996, 35: 330-338. |
4 | SIEWERT F, NOLL T, SCHLEGEL T, et al. The nanometer optical component measuring machine: A new sub-nm topography measuring device for X-ray optics at BESSY[J]. AIP Conference Proceedings, 2004, 705(1): 847-850. |
5 | YAMAUCHI K, YAMAMURA K, MIMURA H, et al. Microstitching interferometry for X-ray reflective optics[J]. Review of Scientific Instruments, 2003, 74(5): 2894-2898. |
6 | MIMURA H, YUMOTO H, MATSUYAMA S, et al. Relative angle determinable stitching interferometry for hard X-ray reflective optics[J]. Review of Scientific Instruments, 2005, 76(4): 045102. |
7 | WINICK H. Synchrotron radiation sources - present capabilities and future directions[J]. Journal of Synchrotron Radiation, 1998, 5(3): 168-175. |
8 | MOBILIO S, BOSCHERINI F, MENEGHINI C. Synchrotron radiation[M]. Berlin, Heidelberg: Springer, 2015. |
9 | HOLLANDT J, KüHNE M, HUBER M C E, et al. The radiometric calibration of SOHO: SR-002 [R]. Bern: ISSI Scientific, 2002. |
10 | KRUMREY M, MüLLER P, CIBIK L, et al. New X-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1624-1631. |
11 | 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 030702. |
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 030702 (in Chinese). | |
12 | WOLTER H. Spiegelsysteme streifenden einfalls als abbildende optiken für r?ntgenstrahlen[J]. Annalen Der Physik, 1952, 445(1-2): 94-114. |
13 | ANGEL J R P. Lobster eyes as X-ray telescopes[C]∥ Proc SPIE 0184, Space Optics Imaging X-Ray Optics Workshop, 1979, 0184: 84-85. |
14 | D?HRING T, PROBST A C, STOLLENWERK M,et al. Prototyping iridium coated mirrors for X-ray astronomy[C]∥SPIE Optics + Optoelectronics. Proc SPIE 10235, EUV and x-Ray Optics: Synergy Between Laboratory and Space V, 2017: 8-15. |
15 | HUDEC R, SUJOVá I, ?IMON V, et al. LOBSTER - X-ray astrophysical facility[J]. PoS-Proceedings of Science, 2008, 10:1-6. |
16 | 金戈, 张臣, 黎龙辉, 等. Angel型龙虾眼X射线光学器件的研制及性能测试[J]. 光学学报, 2021, 41(6): 220-226. |
JIN G, ZHANG C, LI L H, et al. Fabrication and performance testing of angel lobster-eye X-ray micro-pore optics[J]. Acta Optica Sinica, 2021, 41(6): 220-226 (in Chinese). | |
17 | COLLIER M R, PORTER F S, SIBECK D G, et al. Invited article: First flight in space of a wide-field-of-view soft X-ray imager using lobster-eye optics: Instrument description and initial flight results[J]. The Review of Scientific Instruments, 2015, 86(7): 071301. |
18 | SALMASO B, BASSO S, CIVITANI M, et al. Slumped glass foils as substrate for adjustable X-ray optics[C]∥SPIE Optical Engineering + Applications. Proc SPIE 9965, Adaptive X-Ray Optics IV, 2016: 19-33. |
19 | SAGDEO A, RAI S K, LODHA G S, et al. X-ray characterization of thin foil gold mirrors of a soft X-ray telescope for ASTROSAT[J]. Experimental Astronomy, 2010, 28(1): 11-23. |
20 | MATSUMOTO H, IWASE T, MAEJIMA M, et al. Development of an X-ray telescope using the carbon fiber reinforced plastic (CFRP)[C]∥SPIE Optical Engineering + Applications. Proc SPIE 9603, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII, 2015: 252-258. |
21 | FERREIRA D D M, JAKOBSEN A C, MASSAHI S, et al. X-ray mirror development and testing for the ATHENA mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1611-1623. |
22 | HIGNETTE O, FREUND A K, CHINCHIO E. Incoherent X-ray mirror surface metrology[C]∥Optical Science, Engineering and Instrumentation ’97. Proc SPIE 3152, Materials, Manufacturing, and Measurement for Synchrotron Radiation Mirrors, 1997: 188-199. |
23 | TSUSAKA Y, SUZUKI H, AWAKI H, et al. Calibration of Astro-D telescope with an X-ray pencil beam[C]∥SPIE’s 1993 International Symposium on Optics, Imaging, and Instrumentation. Proc SPIE 2011, Multilayer and Grazing Incidence X-Ray/EUV Optics II, 1994: 517-523. |
24 | BAVDAZ M, WILLE E, AYRE M, et al. The ATHENA telescope and optics status[C]∥SPIE Optical Engineering + Applications. Proc SPIE 10399, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VIII, 2017: 50-61. |
25 | IDIR M. X-ray active mirror coupled with a Hartmann wavefront sensor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 616(2-3): 162-171. |
26 | POTANIN S A. Shack-Hartmann wavefront sensor for testing the quality of the optics of the 2.5-m SAI telescope[J]. Astronomy Reports, 2009, 53(8): 703-709. |
27 | TALLON M, THIéBAUT é, LANGLOIS M, et al. The wavefront sensing making-of for THEMIS solar telescope[DB/OL]. arXiv preprint: 2101.02892, 2021. |
28 | FOREST C R, CANIZARES C R, NEAL D R, et al. Metrology of thin transparent optics using Shack-Hartmann wavefront sensing[J]. Optical Engineering, 2004, 43: 742-753. |
29 | SAHA T T, CHAN K W, MAZZARELLA J R, et al. Analysis of the NGXO telescope X-ray Hartmann data[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 1259-1268. |
30 | MERCERE P, BUCOURT S, CAUCHON G, et al. X-ray beam metrology and X-ray optic alignment by Hartmann wavefront sensing[C]∥Optics and Photonics 2005. Proc SPIE 5921, Advances in Metrology for X-Ray and EUV Optics, 2005: 63-72. |
31 | MERCèRE P, IDIR M, MORENO T, et al. Automatic alignment of a Kirkpatrick-Baez active optic by use of a soft-X-ray Hartmann wavefront sensor[J]. Optics Letters, 2006, 31(2): 199-201. |
32 | MOMOSE A. Recent advances in X-ray phase imaging[J]. Japanese Journal of Applied Physics, 2005, 44(9A): 6355-6367. |
33 | PFEIFFER F, WEITKAMP T, BUNK O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4): 258-261. |
34 | WEITKAMP T, N?HAMMER B, DIAZ A, et al. X-ray wavefront analysis and optics characterization with a grating interferometer[J]. Applied Physics Letters, 2005, 86(5): 054101. |
35 | DIAZ A, MOCUTA C, STANGL J, et al. Coherence and wavefront characterization of Si-111 monochromators using double-grating interferometry[J]. Journal of Synchrotron Radiation, 2010, 17(3): 299-307. |
36 | RUTISHAUSER S, RACK A, WEITKAMP T, et al. Heat bump on a monochromator crystal measured with X-ray grating interferometry[J]. Journal of Synchrotron Radiation, 2013, 20(2): 300-305. |
37 | WANG H C, SAWHNEY K, BERUJON S, et al. Fast optimization of a bimorph mirror using X-ray grating interferometry[J]. Optics Letters, 2014, 39(8): 2518-2521. |
38 | ZANETTE I, WEITKAMP T, DONATH T, et al. Two-dimensional X-ray grating interferometer[J]. Physical Review Letters, 2010, 105(24): 248102. |
39 | CLOETENS P, GUIGAY J P, DE MARTINO C, et al. Fractional Talbot imaging of phase gratings with hard X rays[J]. Optics Letters, 1997, 22(14): 1059-1061. |
40 | KAYSER Y, DAVID C, FLECHSIG U, et al. X-ray grating interferometer for in situ and at-wavelength wavefront metrology[J]. Journal of Synchrotron Radiation, 2017, 24(1): 150-162. |
41 | RUTISHAUSER S, SAMOYLOVA L, KRZYWINSKI J, et al. Exploring the wavefront of hard X-ray free-electron laser radiation[J]. Nature Communications, 2012, 3: 947. |
42 | WANG H C, BERUJON S, PAPE I, et al. X-ray wavefront characterization of a Fresnel zone plate using a two-dimensional grating interferometer[J]. Optics Letters, 2013, 38(6): 827-829. |
43 | WANG H C, SAWHNEY K, BERUJON S, et al. X-ray wavefront characterization using a rotating shearing interferometer technique[J]. Optics Express, 2011, 19(17): 16550-16559. |
44 | MATSUYAMA S, YOKOYAMA H, FUKUI R, et al. Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry[J]. Optics Express, 2012, 20(22): 24977-24986. |
45 | SALDITT T, KALBFLEISCH S, OSTERHOFF M, et al. Partially coherent nano-focused X-ray radiation characterized by Talbot interferometry[J]. Optics Express, 2011, 19(10): 9656-9675. |
46 | LIU Y W, SEABERG M, FENG Y P, et al. X-ray free-electron laser wavefront sensing using the fractional Talbot effect[J]. Journal of Synchrotron Radiation, 2020, 27(2): 254-261. |
47 | BERUJON S, ZIEGLER E. Grating-based at-wavelength metrology of hard X-ray reflective optics[J]. Optics Letters, 2012, 37(21): 4464-4466. |
48 | 陈博, 朱佩平, 刘宜晋, 等. X射线光栅相位成像的理论和方法[J]. 物理学报, 2008, 57(3): 1576-1581. |
CHEN B, ZHU P P, LIU Y J, et al. Theory and method of X-ray grating phase contrast imaging[J]. Acta Physica Sinica, 2008, 57(3): 1576-1581 (in Chinese). | |
49 | 闻铭武, 杨笑微, 王占山. 基于X射线塔尔博特效应的纳米光栅制作模拟研究[J]. 物理学报, 2015, 64(11): 114102. |
WEN M W, YANG X W, WANG Z S. Simulation of nano-grating patterning based on X-ray Talbot effect[J]. Acta Physica Sinica, 2015, 64(11): 114102 (in Chinese). | |
50 | 戚俊成. 同步辐射X射线光栅成像及其在相干性测量中的应用研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2014. |
QI J C. Grating based X-ray imaging at SSRF and its application in the research of coherence property[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2014 (in Chinese). | |
51 | HEILMANN R K, DAVIS J E, DEWEY D, et al. Critical-angle transmission grating spectrometer for high-resolution soft X-ray spectroscopy on the International X-ray Observatory[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 7732, Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, 2010: 472-482. |
52 | CERBINO R, PEVERINI L, POTENZA M A C, et al. X-ray-scattering information obtained from near-field speckle[J]. Nature Physics, 2008, 4(3): 238-243. |
53 | BéRUJON S, ZIEGLER E, CERBINO R, et al. Two-dimensional X-ray beam phase sensing[J]. Physical Review Letters, 2012, 108(15): 158102. |
54 | MORGAN K S, PAGANIN D M, SIU K K W. X-ray phase imaging with a paper analyzer[J]. Applied Physics Letters, 2012, 100(12): 124102. |
55 | KASHYAP Y, WANG H C, SAWHNEY K. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy[J]. The Review of Scientific Instruments, 2016, 87(5): 052001. |
56 | PAN B, QIAN K M, XIE H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review[J]. Measurement Science and Technology, 2009, 20(6): 062001. |
57 | ARNISON M R, LARKIN K G, SHEPPARD C J R, et al. Linear phase imaging using differential interference contrast microscopy[J]. Journal of Microscopy, 2004, 214(1): 7-12. |
58 | KOTTLER C, DAVID C, PFEIFFER F, et al. A two-directional approach for grating based differential phase contrast imaging using hard X-rays[J]. Optics Express, 2007, 15(3): 1175-1181. |
59 | TIAN N X, JIANG H, LI A G, et al. Influence of diffuser grain size on the speckle tracking technique[J]. Journal of Synchrotron Radiation, 2020, 27(1): 146-157. |
60 | TIAN N X, JIANG H, LI A G, et al. High-precision speckle-tracking X-ray imaging with adaptive subset size choices[J]. Scientific Reports, 2020, 10: 14238. |
61 | TIAN N X, JIANG H, XUE L, et al. Influence of photon beam and motor vibrations on at-wavelength X-ray speckle scanning metrology[J]. Frontiers in Physics, 2022, 10: 864985. |
62 | BERUJON S, WANG H C, PAPE I, et al. X-ray phase microscopy using the speckle tracking technique[J]. Applied Physics Letters, 2013, 102(15): 154105. |
63 | BERUJON S, WANG H C, ALCOCK S, et al. At-wavelength metrology of hard X-ray mirror using near field speckle[J]. Optics Express, 2014, 22(6): 6438. |
64 | WANG H C, KASHYAP Y, SAWHNEY K. Speckle based X-ray wavefront sensing with nanoradian angular sensitivity[J]. Optics Express, 2015, 23(18): 23310-23317. |
65 | KASHYAP Y, WANG H C, SAWHNEY K. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy[J]. The Review of Scientific Instruments, 2016, 87(5): 052001. |
66 | WANG H C, KASHYAP Y, LAUNDY D, et al. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique[J]. Journal of Synchrotron Radiation, 2015, 22(4): 925-929. |
67 | WANG H C, SUTTER J, SAWHNEY K. Advanced in situ metrology for X-ray beam shaping with super precision[J]. Optics Express, 2015, 23(2): 1605. |
68 | JIANG H, TIAN N X, LIANG D X, et al. A piezoelectric deformable X-ray mirror for phase compensation based on global optimization[J]. Journal of Synchrotron Radiation, 2019, 26(3): 729-736. |
69 | 田纳玺, 蒋晖, 李爱国, 等. 用于同步辐射的硬X射线相位补偿镜的研究[J]. 光学学报, 2020, 40(9): 233-239. |
TIAN N X, JIANG H, LI A G, et al. Study on phase compensation mirror used for hard X-ray synchrotron radiation[J]. Acta Optica Sinica, 2020, 40(9): 233-239 (in Chinese). | |
70 | XUE L, LI Z L, ZHOU T, et al. Absolute metrology method of the X-ray mirror with speckle scanning technique[J]. Applied Optics, 2019, 58(31): 8658-8664. |
71 | ZANETTE I, ZHOU T, BURVALL A, et al. Speckle-based X-ray phase-contrast and dark-field imaging with a laboratory source[J]. Physical Review Letters, 2014, 112(25): 253903. |
72 | WANG H C, KASHYAP Y, SAWHNEY K. From synchrotron radiation to lab source: Advanced speckle-based X-ray imaging using abrasive paper[J]. Scientific Reports, 2016, 6: 20476. |
73 | BECKHOFF B, GOTTWALD A, KLEIN R, et al. A quarter-century of metrology using synchrotron radiation by PTB in Berlin[J]. Physica Status Solidi (b), 2009, 246(7): 1415-1434. |
74 | AWAKI H, KUNIEDA H, FURUZAWA A, et al. ASTRO-H Hard X-ray Telescope (HXT) [C]∥Proceeding of SPIE, 2014: 914426-1. |
75 | OGASAKA Y, SHIBATA R, TAMURA K, et al. Characterization of a hard-X-ray telescope at a synchrotron facility[C]∥Optics and Photonics 2005. Proc SPIE 5900, Optics for EUV, X-Ray, and Gamma-Ray Astronomy II, 2005: 106-113. |
76 | SPIGA D, RAIMONDI L, FURUZAWA A, et al. Angular resolution measurements at SPring-8 of a hard X-ray optic for the New Hard X-ray Mission[C]∥SPIE Optical Engineering + Applications. Proc SPIE 8147, Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 2011: 92-103. |
77 | HEINIS D, CARBALLEDO A, COLLDELRAM C, et al. X-ray facility for the characterization of the Athena mirror modules at the ALBA synchrotron[C]∥Proc SPIE 11852, International Conference on Space Optics — ICSO 2020, 2021: 867-877. |
78 | 刘宏颖, 穆宝忠, 王占山. Wolter-Ⅰ型X射线天文望远镜的光学设计[J]. 光学仪器, 2012, 34(6): 31-36. |
LIU H Y, MU B Z, WANG Z S. Optical design of Wolter-Ⅰ X-ray astronomical telescope[J]. Optical Instruments, 2012, 34(6): 31-36 (in Chinese). | |
79 | GIBAUD A, HAZRA S. X-ray reflectivity and diffuse scattering [J]. Current Science, 2000, 78(12): 1467-1477. |
80 | SPIGA D. Analytical evaluation of the X-ray scattering contribution to imaging degradation in grazing-incidence X-ray telescopes[J]. Astronomy & Astrophysics, 2007, 468(2): 775-784. |
81 | MAEDA Y, KIKUCHI N, KURASHIMA S, et al. Reflectivity around the gold L-edges of X-ray reflector of the soft X-ray telescope onboard ASTRO-H[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1305-1312. |
82 | SAGDEO A, RAI S K, LODHA G S, et al. X-ray characterization of thin foil gold mirrors of a soft X-ray telescope for ASTROSAT[J]. Experimental Astronomy, 2010, 28(1): 11-23. |
83 | FERREIRA D D M, JAKOBSEN A C, MASSAHI S, et al. X-ray mirror development and testing for the ATHENA mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1611-1623. |
84 | CHRISTENSEN F E, CRAIG W W, WIND D L,et al. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 451(3): 572-581. |
85 | JIANG H, WANG Z S, ZHU J T. Interface characterization of B4C-based multilayers by X-ray grazing-incidence reflectivity and diffuse scattering[J]. Journal of Synchrotron Radiation, 2013, 20(3): 449-454. |
86 | JIANG H, et al. In situ GISAXS study on the temperature-dependent performance of multilayer monochromators from the liquid nitrogen cooling temperature to 600 ℃[J]. Applied Surface Science, 2020, 508: 144838. |
87 | 张亚超, 刘鹏, 王晓光,等. X射线散射法测量Wolter-Ⅰ型掠入射望远镜的表面粗糙度[J]. 中国光学, 2019, 12(3): 587-595. |
ZHANG Y C, LIU P, WANG X G, et al. Characterizing curved surface roughness of Wolter-I X-ray grazing incidence telescope[J]. Chinese Optics, 2019, 12(3): 587-595 (in Chinese). |
/
〈 |
|
〉 |