综述

空间X射线反射式聚焦系统的同步辐射表征技术

  • 田纳玺 ,
  • 谢佳男 ,
  • 蒋晖 ,
  • 杨宇
展开
  • 1.中国科学院 上海高等研究院,上海 201204
    2.上海科学技术大学,上海 201210
    3.中国科学院 上海应用物理研究所,上海 201800
    4.北京控制工程研究所,北京 100190
.E-mail: jianghui@zjlab.org.cn

收稿日期: 2022-05-07

  修回日期: 2022-06-04

  录用日期: 2022-07-08

  网络出版日期: 2022-07-14

基金资助

国家自然科学基金(11775295);上海市自然科学基金(21ZR1471500);中国科学院青年创新促进会(2018295)

Characterization of space X-ray reflective focusing system by using synchrotron radiation facility

  • Naxi TIAN ,
  • Jianan XIE ,
  • Hui JIANG ,
  • Yu YANG
Expand
  • 1.Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201204,China
    2.ShanghaiTech University,Shanghai 201210,China
    3.Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
    4.Beijing Institute of Tracking and Communication Technology,Beijing 100190,China

Received date: 2022-05-07

  Revised date: 2022-06-04

  Accepted date: 2022-07-08

  Online published: 2022-07-14

Supported by

National Natural Science Foundation of China(11775295);Natural Science Foundation of Shanghai of China(21ZR1471500);the Funds from the Youth Innovation Promotion Association, CAS(2018295)

摘要

针对脉冲星观测与计时导航等领域对空间X射线望远镜测试与标定的迫切需求,综述了目前国内外基于同步辐射和X射线自由电子激光光源发展的多种高精度的反射式聚焦系统的面形检测、系统标定和反射率计量测量技术。着重介绍了细光束、哈特曼波前传感器、光栅干涉、近场散斑等面形测试方法在不同尺度和面形的反射镜在线测量中的应用,阐明了其在工程应用中的优劣。介绍了同步辐射装置在空间X射线望远镜的在线成像和校准以及反射率计量上已开展的卓有成效工作。期望通过相关综述介绍,可以推广空间X射线望远镜反射元件广泛利用同步辐射等大科学装置进行性能表征实验,以此促进相关领域的进一步发展。国内同步辐射大科学装置的建立和蓬勃发展为大尺度空间X射线望远镜的在线检测、校准和光学性能表征提供了重要支撑。

本文引用格式

田纳玺 , 谢佳男 , 蒋晖 , 杨宇 . 空间X射线反射式聚焦系统的同步辐射表征技术[J]. 航空学报, 2023 , 44(3) : 527386 -527386 . DOI: 10.7527/S1000-6893.2022.27386

Abstract

Considering the urgent demand for the testing and calibration of X-ray space telescope in the fields of pulsar observation and timing navigation, this review summarizes various high-precision wavefront and mirror figure detection, system calibration and reflectivity test techniques using synchrotron radiation and free electron laser facilities. Some important at-wavelength metrologies for testing reflective mirrors with different scales and surface shapes, such as pencil beam, Hartmann sensor, grating interferometer and near-field speckle techniques, are introduced and compared. The current application of synchrotron radiation facility in at-wavelength imaging, calibration and reflectivity measurement of X-ray space telescope is also presented. The characterization of space telescope based on synchrotron radiation is hoped to be widely developed, so as to promote further progress of related fields. The blooming synchrotron radiation facilities provide potential strong support for wavelength detection, calibration and optical performance characterization for large-scale X-ray space telescope.

参考文献

1 HUDEC R. Kirkpatrick-baez (KB) and lobster eye (LE) optics for astronomical and laboratory applications[J]. X-Ray Optics and Instrumentation20102010: 139148.
2 杨鹏, 伍凡, 侯溪, 等. 基于ZEMAX的Fizeau干涉仪模型[J]. 光电工程201037(11): 98-102.
  YANG P, WU F, HOU X, et al. Fizeau interferometer model base on ZEMAX[J]. Opto-Electronic Engineering201037(11): 98-102 (in Chinese).
3 LI H Z, LI X D, GRINDEL M W, et al. Measurement of X-ray telescope mirrors using a vertical scanning long trace profiler[J]. Optical Engineering199635: 330-338.
4 SIEWERT F, NOLL T, SCHLEGEL T, et al. The nanometer optical component measuring machine: A new sub-nm topography measuring device for X-ray optics at BESSY[J]. AIP Conference Proceedings2004705(1): 847-850.
5 YAMAUCHI K, YAMAMURA K, MIMURA H, et al. Microstitching interferometry for X-ray reflective optics[J]. Review of Scientific Instruments200374(5): 2894-2898.
6 MIMURA H, YUMOTO H, MATSUYAMA S, et al. Relative angle determinable stitching interferometry for hard X-ray reflective optics[J]. Review of Scientific Instruments200576(4): 045102.
7 WINICK H. Synchrotron radiation sources - present capabilities and future directions[J]. Journal of Synchrotron Radiation19985(3): 168-175.
8 MOBILIO S, BOSCHERINI F, MENEGHINI C. Synchrotron radiation[M]. Berlin, Heidelberg: Springer, 2015.
9 HOLLANDT J, KüHNE M, HUBER M C E, et al. The radiometric calibration of SOHO: SR-002 [R]. Bern: ISSI Scientific, 2002.
10 KRUMREY M, MüLLER P, CIBIK L, et al. New X-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1624-1631.
11 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报202069(3): 030702.
  ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica202069(3): 030702 (in Chinese).
12 WOLTER H. Spiegelsysteme streifenden einfalls als abbildende optiken für r?ntgenstrahlen[J]. Annalen Der Physik1952445(1-2): 94-114.
13 ANGEL J R P. Lobster eyes as X-ray telescopes[C]∥ Proc SPIE 0184, Space Optics Imaging X-Ray Optics Workshop, 19790184: 84-85.
14 D?HRING T, PROBST A C, STOLLENWERK M,et al. Prototyping iridium coated mirrors for X-ray astronomy[C]∥SPIE Optics + Optoelectronics. Proc SPIE 10235, EUV and x-Ray Optics: Synergy Between Laboratory and Space V, 2017: 8-15.
15 HUDEC R, SUJOVá I, ?IMON V, et al. LOBSTER - X-ray astrophysical facility[J]. PoS-Proceedings of Science200810:1-6.
16 金戈, 张臣, 黎龙辉, 等. Angel型龙虾眼X射线光学器件的研制及性能测试[J]. 光学学报202141(6): 220-226.
  JIN G, ZHANG C, LI L H, et al. Fabrication and performance testing of angel lobster-eye X-ray micro-pore optics[J]. Acta Optica Sinica202141(6): 220-226 (in Chinese).
17 COLLIER M R, PORTER F S, SIBECK D G, et al. Invited article: First flight in space of a wide-field-of-view soft X-ray imager using lobster-eye optics: Instrument description and initial flight results[J]. The Review of Scientific Instruments201586(7): 071301.
18 SALMASO B, BASSO S, CIVITANI M, et al. Slumped glass foils as substrate for adjustable X-ray optics[C]∥SPIE Optical Engineering + Applications. Proc SPIE 9965Adaptive X-Ray Optics IV, 2016: 19-33.
19 SAGDEO A, RAI S K, LODHA G S, et al. X-ray characterization of thin foil gold mirrors of a soft X-ray telescope for ASTROSAT[J]. Experimental Astronomy201028(1): 11-23.
20 MATSUMOTO H, IWASE T, MAEJIMA M, et al. Development of an X-ray telescope using the carbon fiber reinforced plastic (CFRP)[C]∥SPIE Optical Engineering + Applications. Proc SPIE 9603Optics for EUV, X-Ray, and Gamma-Ray Astronomy VII, 2015: 252-258.
21 FERREIRA D D M, JAKOBSEN A C, MASSAHI S, et al. X-ray mirror development and testing for the ATHENA mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1611-1623.
22 HIGNETTE O, FREUND A K, CHINCHIO E. Incoherent X-ray mirror surface metrology[C]∥Optical Science, Engineering and Instrumentation ’97. Proc SPIE 3152Materials, Manufacturing, and Measurement for Synchrotron Radiation Mirrors, 1997: 188-199.
23 TSUSAKA Y, SUZUKI H, AWAKI H, et al. Calibration of Astro-D telescope with an X-ray pencil beam[C]∥SPIE’s 1993 International Symposium on Optics, Imaging, and Instrumentation. Proc SPIE 2011Multilayer and Grazing Incidence X-Ray/EUV Optics II, 1994: 517-523.
24 BAVDAZ M, WILLE E, AYRE M, et al. The ATHENA telescope and optics status[C]∥SPIE Optical Engineering + Applications. Proc SPIE 10399Optics for EUV, X-Ray, and Gamma-Ray Astronomy VIII, 2017: 50-61.
25 IDIR M. X-ray active mirror coupled with a Hartmann wavefront sensor[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment2010616(2-3): 162-171.
26 POTANIN S A. Shack-Hartmann wavefront sensor for testing the quality of the optics of the 2.5-m SAI telescope[J]. Astronomy Reports200953(8): 703-709.
27 TALLON M, THIéBAUT é, LANGLOIS M, et al. The wavefront sensing making-of for THEMIS solar telescope[DB/OL]. arXiv preprint: 2101.02892, 2021.
28 FOREST C R, CANIZARES C R, NEAL D R, et al. Metrology of thin transparent optics using Shack-Hartmann wavefront sensing[J]. Optical Engineering200443: 742-753.
29 SAHA T T, CHAN K W, MAZZARELLA J R, et al. Analysis of the NGXO telescope X-ray Hartmann data[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 1259-1268.
30 MERCERE P, BUCOURT S, CAUCHON G, et al. X-ray beam metrology and X-ray optic alignment by Hartmann wavefront sensing[C]∥Optics and Photonics 2005. Proc SPIE 5921Advances in Metrology for X-Ray and EUV Optics, 2005: 63-72.
31 MERCèRE P, IDIR M, MORENO T, et al. Automatic alignment of a Kirkpatrick-Baez active optic by use of a soft-X-ray Hartmann wavefront sensor[J]. Optics Letters200631(2): 199-201.
32 MOMOSE A. Recent advances in X-ray phase imaging[J]. Japanese Journal of Applied Physics200544(9A): 6355-6367.
33 PFEIFFER F, WEITKAMP T, BUNK O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics20062(4): 258-261.
34 WEITKAMP T, N?HAMMER B, DIAZ A, et al. X-ray wavefront analysis and optics characterization with a grating interferometer[J]. Applied Physics Letters200586(5): 054101.
35 DIAZ A, MOCUTA C, STANGL J, et al. Coherence and wavefront characterization of Si-111 monochromators using double-grating interferometry[J]. Journal of Synchrotron Radiation201017(3): 299-307.
36 RUTISHAUSER S, RACK A, WEITKAMP T, et al. Heat bump on a monochromator crystal measured with X-ray grating interferometry[J]. Journal of Synchrotron Radiation201320(2): 300-305.
37 WANG H C, SAWHNEY K, BERUJON S, et al. Fast optimization of a bimorph mirror using X-ray grating interferometry[J]. Optics Letters201439(8): 2518-2521.
38 ZANETTE I, WEITKAMP T, DONATH T, et al. Two-dimensional X-ray grating interferometer[J]. Physical Review Letters2010105(24): 248102.
39 CLOETENS P, GUIGAY J P, DE MARTINO C, et al. Fractional Talbot imaging of phase gratings with hard X rays[J]. Optics Letters199722(14): 1059-1061.
40 KAYSER Y, DAVID C, FLECHSIG U, et al. X-ray grating interferometer for in situ and at-wavelength wavefront metrology[J]. Journal of Synchrotron Radiation201724(1): 150-162.
41 RUTISHAUSER S, SAMOYLOVA L, KRZYWINSKI J, et al. Exploring the wavefront of hard X-ray free-electron laser radiation[J]. Nature Communications20123: 947.
42 WANG H C, BERUJON S, PAPE I, et al. X-ray wavefront characterization of a Fresnel zone plate using a two-dimensional grating interferometer[J]. Optics Letters201338(6): 827-829.
43 WANG H C, SAWHNEY K, BERUJON S, et al. X-ray wavefront characterization using a rotating shearing interferometer technique[J]. Optics Express201119(17): 16550-16559.
44 MATSUYAMA S, YOKOYAMA H, FUKUI R, et al. Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry[J]. Optics Express201220(22): 24977-24986.
45 SALDITT T, KALBFLEISCH S, OSTERHOFF M, et al. Partially coherent nano-focused X-ray radiation characterized by Talbot interferometry[J]. Optics Express201119(10): 9656-9675.
46 LIU Y W, SEABERG M, FENG Y P, et al. X-ray free-electron laser wavefront sensing using the fractional Talbot effect[J]. Journal of Synchrotron Radiation202027(2): 254-261.
47 BERUJON S, ZIEGLER E. Grating-based at-wavelength metrology of hard X-ray reflective optics[J]. Optics Letters201237(21): 4464-4466.
48 陈博, 朱佩平, 刘宜晋, 等. X射线光栅相位成像的理论和方法[J]. 物理学报200857(3): 1576-1581.
  CHEN B, ZHU P P, LIU Y J, et al. Theory and method of X-ray grating phase contrast imaging[J]. Acta Physica Sinica200857(3): 1576-1581 (in Chinese).
49 闻铭武, 杨笑微, 王占山. 基于X射线塔尔博特效应的纳米光栅制作模拟研究[J]. 物理学报201564(11): 114102.
  WEN M W, YANG X W, WANG Z S. Simulation of nano-grating patterning based on X-ray Talbot effect[J]. Acta Physica Sinica201564(11): 114102 (in Chinese).
50 戚俊成. 同步辐射X射线光栅成像及其在相干性测量中的应用研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2014.
  QI J C. Grating based X-ray imaging at SSRF and its application in the research of coherence property[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2014 (in Chinese).
51 HEILMANN R K, DAVIS J E, DEWEY D, et al. Critical-angle transmission grating spectrometer for high-resolution soft X-ray spectroscopy on the International X-ray Observatory[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 7732Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, 2010: 472-482.
52 CERBINO R, PEVERINI L, POTENZA M A C, et al. X-ray-scattering information obtained from near-field speckle[J]. Nature Physics20084(3): 238-243.
53 BéRUJON S, ZIEGLER E, CERBINO R, et al. Two-dimensional X-ray beam phase sensing[J]. Physical Review Letters2012108(15): 158102.
54 MORGAN K S, PAGANIN D M, SIU K K W. X-ray phase imaging with a paper analyzer[J]. Applied Physics Letters2012100(12): 124102.
55 KASHYAP Y, WANG H C, SAWHNEY K. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy[J]. The Review of Scientific Instruments201687(5): 052001.
56 PAN B, QIAN K M, XIE H M, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review[J]. Measurement Science and Technology200920(6): 062001.
57 ARNISON M R, LARKIN K G, SHEPPARD C J R, et al. Linear phase imaging using differential interference contrast microscopy[J]. Journal of Microscopy2004214(1): 7-12.
58 KOTTLER C, DAVID C, PFEIFFER F, et al. A two-directional approach for grating based differential phase contrast imaging using hard X-rays[J]. Optics Express200715(3): 1175-1181.
59 TIAN N X, JIANG H, LI A G, et al. Influence of diffuser grain size on the speckle tracking technique[J]. Journal of Synchrotron Radiation202027(1): 146-157.
60 TIAN N X, JIANG H, LI A G, et al. High-precision speckle-tracking X-ray imaging with adaptive subset size choices[J]. Scientific Reports202010: 14238.
61 TIAN N X, JIANG H, XUE L, et al. Influence of photon beam and motor vibrations on at-wavelength X-ray speckle scanning metrology[J]. Frontiers in Physics202210: 864985.
62 BERUJON S, WANG H C, PAPE I, et al. X-ray phase microscopy using the speckle tracking technique[J]. Applied Physics Letters2013102(15): 154105.
63 BERUJON S, WANG H C, ALCOCK S, et al. At-wavelength metrology of hard X-ray mirror using near field speckle[J]. Optics Express201422(6): 6438.
64 WANG H C, KASHYAP Y, SAWHNEY K. Speckle based X-ray wavefront sensing with nanoradian angular sensitivity[J]. Optics Express201523(18): 23310-23317.
65 KASHYAP Y, WANG H C, SAWHNEY K. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy[J]. The Review of Scientific Instruments201687(5): 052001.
66 WANG H C, KASHYAP Y, LAUNDY D, et al. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique[J]. Journal of Synchrotron Radiation201522(4): 925-929.
67 WANG H C, SUTTER J, SAWHNEY K. Advanced in situ metrology for X-ray beam shaping with super precision[J]. Optics Express201523(2): 1605.
68 JIANG H, TIAN N X, LIANG D X, et al. A piezoelectric deformable X-ray mirror for phase compensation based on global optimization[J]. Journal of Synchrotron Radiation201926(3): 729-736.
69 田纳玺, 蒋晖, 李爱国, 等. 用于同步辐射的硬X射线相位补偿镜的研究[J]. 光学学报202040(9): 233-239.
  TIAN N X, JIANG H, LI A G, et al. Study on phase compensation mirror used for hard X-ray synchrotron radiation[J]. Acta Optica Sinica202040(9): 233-239 (in Chinese).
70 XUE L, LI Z L, ZHOU T, et al. Absolute metrology method of the X-ray mirror with speckle scanning technique[J]. Applied Optics201958(31): 8658-8664.
71 ZANETTE I, ZHOU T, BURVALL A, et al. Speckle-based X-ray phase-contrast and dark-field imaging with a laboratory source[J]. Physical Review Letters2014112(25): 253903.
72 WANG H C, KASHYAP Y, SAWHNEY K. From synchrotron radiation to lab source: Advanced speckle-based X-ray imaging using abrasive paper[J]. Scientific Reports20166: 20476.
73 BECKHOFF B, GOTTWALD A, KLEIN R, et al. A quarter-century of metrology using synchrotron radiation by PTB in Berlin[J]. Physica Status Solidi (b)2009246(7): 1415-1434.
74 AWAKI H, KUNIEDA H, FURUZAWA A, et al. ASTRO-H Hard X-ray Telescope (HXT) [C]∥Proceeding of SPIE, 2014: 914426-1.
75 OGASAKA Y, SHIBATA R, TAMURA K, et al. Characterization of a hard-X-ray telescope at a synchrotron facility[C]∥Optics and Photonics 2005. Proc SPIE 5900Optics for EUV, X-Ray, and Gamma-Ray Astronomy II, 2005: 106-113.
76 SPIGA D, RAIMONDI L, FURUZAWA A, et al. Angular resolution measurements at SPring-8 of a hard X-ray optic for the New Hard X-ray Mission[C]∥SPIE Optical Engineering + Applications. Proc SPIE 8147Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 2011: 92-103.
77 HEINIS D, CARBALLEDO A, COLLDELRAM C, et al. X-ray facility for the characterization of the Athena mirror modules at the ALBA synchrotron[C]∥Proc SPIE 11852, International Conference on Space Optics — ICSO 20202021: 867-877.
78 刘宏颖, 穆宝忠, 王占山. Wolter-Ⅰ型X射线天文望远镜的光学设计[J]. 光学仪器201234(6): 31-36.
  LIU H Y, MU B Z, WANG Z S. Optical design of Wolter-Ⅰ X-ray astronomical telescope[J]. Optical Instruments201234(6): 31-36 (in Chinese).
79 GIBAUD A, HAZRA S. X-ray reflectivity and diffuse scattering [J]. Current Science200078(12): 1467-1477.
80 SPIGA D. Analytical evaluation of the X-ray scattering contribution to imaging degradation in grazing-incidence X-ray telescopes[J]. Astronomy & Astrophysics2007468(2): 775-784.
81 MAEDA Y, KIKUCHI N, KURASHIMA S, et al. Reflectivity around the gold L-edges of X-ray reflector of the soft X-ray telescope onboard ASTRO-H[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1305-1312.
82 SAGDEO A, RAI S K, LODHA G S, et al. X-ray characterization of thin foil gold mirrors of a soft X-ray telescope for ASTROSAT[J]. Experimental Astronomy201028(1): 11-23.
83 FERREIRA D D M, JAKOBSEN A C, MASSAHI S, et al. X-ray mirror development and testing for the ATHENA mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1611-1623.
84 CHRISTENSEN F E, CRAIG W W, WIND D L,et al. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment2000451(3): 572-581.
85 JIANG H, WANG Z S, ZHU J T. Interface characterization of B4C-based multilayers by X-ray grazing-incidence reflectivity and diffuse scattering[J]. Journal of Synchrotron Radiation201320(3): 449-454.
86 JIANG H, et al. In situ GISAXS study on the temperature-dependent performance of multilayer monochromators from the liquid nitrogen cooling temperature to 600 ℃[J]. Applied Surface Science2020508: 144838.
87 张亚超, 刘鹏, 王晓光,等. X射线散射法测量Wolter-Ⅰ型掠入射望远镜的表面粗糙度[J]. 中国光学201912(3): 587-595.
  ZHANG Y C, LIU P, WANG X G, et al. Characterizing curved surface roughness of Wolter-I X-ray grazing incidence telescope[J]. Chinese Optics201912(3): 587-595 (in Chinese).
文章导航

/