流体力学与飞行力学

侧风下孤立尾桨的气动特性和抗侧风优化

  • 孙钰锟 ,
  • 王珑 ,
  • 王同光 ,
  • 钱耀如 ,
  • 郑全伟
展开
  • 1.南京航空航天大学 江苏省风力机设计高技术研究重点实验室,南京 210016
    2.南京工程学院 能源研究院,南京 211167
.E-mail: longwang@nuaa.edu.cn

收稿日期: 2022-05-16

  修回日期: 2022-06-01

  录用日期: 2022-06-29

  网络出版日期: 2022-07-08

基金资助

国家重点研发计划(2019YFE0192600);国家自然科学基金(52006098);江苏高校优势学科建设工程资助项目;南京工程学院基金(YKJ201943)

Aerodynamic characteristics and crosswind counteraction of isolated tail rotor in crosswind environment

  • Yukun SUN ,
  • Long WANG ,
  • Tongguang WANG ,
  • Yaoru QIAN ,
  • Quanwei ZHENG
Expand
  • 1.Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design,Nanjing University of Aeronautics and Astro-nautics,Nanjing 210016,China
    2.Energy Research Institute,Nanjing Institute of Technology,Nanjing 211167,China

Received date: 2022-05-16

  Revised date: 2022-06-01

  Accepted date: 2022-06-29

  Online published: 2022-07-08

Supported by

National Key Research and Development Program(2019YFE0192600);National Natural Science Foundation of China(52006098);Priority Academic Program Development of Jiangsu Higher Education Institutions;Nanjing Institute of Technology(YKJ201943)

摘要

尾桨涡环严重危害了直升机飞行安全,为探讨涡环对桨盘附近诱导速度场的影响和解释桨叶拉力非定常脉动的原因,构建了一套基于非定常雷诺平均Navier-Stokes方程的尾桨涡环数值计算方法,并结合叶素动量理论和圆线涡环模型进行气动分析。同时,为解决当前翼型优化中广泛使用的冻结湍流黏性假设存在的固有缺陷,建立了一套全湍流连续伴随的翼型优化框架,获得的翼型用于尾桨设计以提高尾桨抗侧风能力。结果表明,桨盘附近诱导速度场对侧风入流速度十分敏感,在典型涡环状态下,14.65 m/s侧风导致涡环的涡强增大且不断改变,引发翼剖面的有效攻角随桨盘附近风速动态减小,进而尾桨拉力下降至原有的58.5%并伴有高频脉动。全湍流连续伴随在最优外形的获取上则要领先于冻结湍流黏性假设,最佳翼型获得的尾桨相较于原始尾桨的拉力提高了10.9%,悬停效率提高了3.9%,扩大了尾桨进入涡环的临界侧风速度。

本文引用格式

孙钰锟 , 王珑 , 王同光 , 钱耀如 , 郑全伟 . 侧风下孤立尾桨的气动特性和抗侧风优化[J]. 航空学报, 2023 , 44(10) : 127454 -127454 . DOI: 10.7527/S1000-6893.2022.27454

Abstract

The tail rotor vortex ring seriously endangers the flight safety of helicopters. To explore the influence of the vortex ring on the induced velocity field near the rotor disk and explain the cause of unsteady pulsation of blade thrust, we construct a set of numerical calculation methods for the tail rotor vortex ring based on unsteady Reynolds averaged Navier Stokes equations, and conduct aerodynamic analysis combining the blade element theory and the circular vortex ring model. Meanwhile, an airfoil optimization framework with the continuous adjoint turbulence is established to solve the inherent defects of the frozen eddy viscosity assumption, and the obtained airfoil is used in the design of tail rotors to improve the crosswind counteraction ability. The results show that the induced velocity field near the propeller disk is sensitive to the inlet velocity of the cross wind. In the typical vortex ring state, the cross wind of 14.65 m/s causes the vortex strength of the vortex ring to increase and change continuously, induces decrease and dynamic change of the effective angle of attack of the blade section, and further reduces the tail rotor thrust to 58.5% of the original value with high-frequency pulsation. The adjoint turbulence method is superior to the frozen eddy viscosity assumption in terms of optimization convergence. Compared with those of the base tail rotor, the thrust of the tail rotor obtained by optimizing the airfoil and the figure of merit are increased by 10.9% and 3.9%, respectively, and the critical crosswind velocity of the tail rotor entering the vortex ring is expanded.

参考文献

1 黄明其, 王亮权, 何龙, 等. 旋翼涡环状态气动特性和参数变化的风洞试验[J]. 航空动力学报201934(11): 2305-2315.
  HUANG M Q, WANG L Q, HE L, et al. Wind tunnel test of aerodynamic characteristics and parametric variation for rotor in vortex ring state[J]. Journal of Aerospace Power201934(11): 2305-2315 (in Chinese).
2 李高华. 直升机旋翼涡环状态流场高分辨率数值模拟方法研究[D]. 上海: 上海交通大学, 2018: 128-129.
  LI G H. Study of high resolution numerical method for helicopter rotor in vortex ring state[D]. Shanghai: Shanghai Jiao Tong University, 2018: 128-129 (in Chinese).
3 曹栋, 曹义华. 垂直下降状态下的旋翼三维流场数值模拟[J]. 北京航空航天大学学报201238(5): 641-647.
  CAO D, CAO Y H. Three dimensional numerical simulation of rotor in vertical descent flight[J]. Journal of Beijing University of Aeronautics and Astronautics201238(5): 641-647 (in Chinese).
4 DZIUBINSKI A, STALEWSKI W. Vortex ring state on modelling and simulation using actuator disc[C]∥ 21st European Conference Simulation Ecms. Prague: ECMS Press, 2007: 397-402.
5 GASPAROVIC P, KOVACS R, FOZO L. Numerical investigation of vortex ring state of tail rotor and uncontrolled rotation of helicopter[C]∥2016 IEEE 14th International Symposium on Applied Machine Intelligence and Informatics (SAMI). Piscataway: IEEE Press, 2016: 269-273.
6 MAKEEV P V, IGNATKIN Y M, SHOMOV A I.Numerical investigation of full scale coaxial main rotor aerodynamics in hover and vertical descent[J].Chinese Journal of Aeronautics202134(5): 666-683.
7 王军杰, 俞志明, 陈仁良, 等. 倾转四旋翼飞行器垂直飞行状态气动特性[J]. 航空动力学报202136(2): 249-263.
  WANG J J, YU Z M, CHEN R L, et al. Aerodynamic characteristics of quad tilt rotor aircraft in vertical flight[J]. Journal of Aerospace Power202136(2): 249-263 (in Chinese).
8 王军杰, 陈仁良, 王志瑾, 等. 多旋翼飞行器涡环状态数值模拟[J]. 航空动力学报202035(5): 1018-1028.
  WANG J J, CHEN R L, WANG Z J, et al. Numerical simulation of multi-rotor aircraft in vortex ring state[J]. Journal of Aerospace Power202035(5): 1018-1028 (in Chinese).
9 ZALEWSKI W. Numerical simulation of vortex ring state phenomenon for the mi2 type helicopter tail rotor[J]. Journal of KONES Powertrain and Transport201623(2): 437-442.
10 WIESNER W, KOHLER G. Tail rotor performance in presence of main rotor, ground, and winds[J]. Journal of the American Helicopter Society197419(3): 2-9.
11 EFIMOV V V, CHERNIGIN K O. Vortex ring state as a cause of a single-rotor helicopter unanticipated yaw[J]. Aerospace Systems20225(3): 413-418.
12 GUBBELS A W, CARIGNAN S J R P. Handling qualities assessment of the effects of tail boom strakes on the Bell 412 helicopter[J]. Aerospace Science and Technology20059(5): 436-444.
13 沙虹伟. 尾桨倾斜和可动平尾对直升机性能/品质影响及设计方法研究[D]. 南京: 南京航空航天大学, 2013: 34-42.
  SHA H W. Research on the influence of tail rotor tilting and movable stabilator on helicopter performance/flying qualities and designing method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 34-42. (in Chinese)
14 EBRAHIMI M, JAHANGIRIAN A. A hierarchical parallel strategy for aerodynamic shape optimization with genetic algorithm[J]. Scientia Iranica201522(6): 2379-2388.
15 TIMNAK N, JAHANGIRIAN A. Multi-point optimization of transonic airfoils using an enhanced genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018232(7): 1347-1360.
16 JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing19883(3): 233-260.
17 MARTINS J R R A, KROO I, ALONSO J. An automated method for sensitivity analysis using complex variables[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: 689.
18 KIM S, ALONSO J J, JAMESON A. Multi-element high-lift configuration design optimization using viscous continuous adjoint method[J]. Journal of Aircraft200441(5): 1082-1097.
19 AMINI Y, EMDAD H, FARID M. Adjoint shape optimization of airfoils with attached Gurney flap[J]. Aerospace Science and Technology201541: 216-228.
20 罗佳奇, 杨婧. 基于伴随方法的单级低速压气机气动设计优化[J]. 航空学报202041(5): 623368.
  LUO J Q, YANG J. Aerodynamic design optimization of a single low-speed compressor stage by an adjoint method[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623368 (in Chinese).
21 LYU Z J, KENWAY G K, PAIGE C, et al. Automatic differentiation adjoint of the Reynolds-averaged navier-stokes equations with a turbulence model[C]∥21st AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2013: 2581
22 SIGNOR D, YAMAUCHI G, SMITH C A, et al. Performance and loads data from an outdoor hover test of a Lynx tail rotor[R]. Washington D. C.: NASA, 1989
23 缪涛, 陈波, 马率, 等. 基于动态重叠网格方法的尾翼对螺旋桨滑流的影响[J]. 航空学报201940(4): 622338.
  MIAO T, CHEN B, MA S, et al. Influence of tail wing on propeller slipstream based on dynamic overlapping grid method[J]. Acta Aeronautica et Astronautica Sinica201940(4): 622338 (in Chinese).
24 厉聪聪, 史勇杰, 徐国华, 马太行. 基于前缘下垂的提升旋翼悬停气动特性研究[J]. 南京航空航天大学学报(英文版)202138():10-16.
  LI C C, SHI Y J, XU G H. Research on aerodynamic characteristics of hovering rotor based on leading edge droop[J]. Journal of Nanjing University of Aeronautics and Astronautics202138(Sup 1): 10-16.
25 OTHMER C, DE VILLIERS E, WELLER H. Implementation of a continuous adjoint for topology optimization of ducted flows[C]∥18th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2007: 3947.
26 VURUSKAN A, HOSDER S. Impact of turbulence models and shape parameterization on robust aerodynamic shape optimization[J]. Journal of Aircraft201956(3): 1099-1115.
27 LI L, YUAN T Y, LI Y, et al. Multidisciplinary design optimization based on parameterized free-form deformation for single turbine[J]. AIAA Journal201957(5): 2075-2087.
28 辛宏, 高正. 直升机涡环状态速度边界的试验研究[J]. 南京航空航天大学学报199527(4): 439-444.
  XIN H, GAO Z. An experimental investigation on the boundary of helicopter vortex-ring state[J]. Transactions of Nanjing University of Aeronautics & Astronautics199527(4): 439-444. (in Chinese)
29 HAYMAN K J, REDDY K. Calculation of the velocity field generated by a helicopter main and tail rotors in hover[R]. Melbourne: Aeronautical Research Laboratories, 1984.
30 GHARIB M, RAMBOD E, SHARIFF K. A universal time scale for vortex ring formation[J]. Journal of Fluid Mechanics1998360: 121-140.
文章导航

/