初始应力状态对薄壁件双侧滚压影响规律
收稿日期: 2022-05-11
修回日期: 2022-06-01
录用日期: 2022-06-27
网络出版日期: 2022-07-08
基金资助
国家自然科学基金(51905313);山东省自然科学基金(ZR2019BEE033);山东建筑大学博士科研基金(XNBS1801)
Influence of initial stress state on bilateral rolling process of thin⁃walled part
Received date: 2022-05-11
Revised date: 2022-06-01
Accepted date: 2022-06-27
Online published: 2022-07-08
Supported by
National Natural Science Foundation of China(51905313);Natural Science Foundation of Shandong Province(ZR2019BEE033);Doctoral Research Foundation of Shandong Jianzhu University(XNBS1801)
双侧滚压工艺是航空结构件生产过程中常采用的校正方式,然而由于滚压校正过程中工件原有应力场与滚压应力场的耦合作用等材料内部物理力学性能变化机制不明确,限制了滚压校正工艺稳定性的提升。为此建立了无初始应力、仅毛坯应力、毛坯应力与加工应力耦合3种初始应力状态下的7050-T7451铝合金T型件双侧滚压有限元模型,获得了工件的滚压变形及残余应力分布规律。结果显示3种初始应力状态下滚压导致的工件最大弯曲变形量分别为2.56×10-1、2.76×10-1、2.49×10-1 mm。毛坯应力对滚压变形的影响程度约为7.8%,在此基础上加工应力的影响约为9.8%,且毛坯应力与加工应力的作用方向相反。滚压区域残余应力主要集中在滚压方向和垂直滚压方向,在工件表面均为压应力,在次表面达最大值。初始应力会导致工件沿滚压方向全厚度范围内的应力值增大;而在垂直滚压方向,初始应力主要造成表面应力的改变。对滚压过程中的应变-应力场演变过程进行了分析,揭示了毛坯应力与加工应力对滚压作用的影响机制。研究成果对于进一步提高滚压校正精度具有重要意义。
路来骁 , 徐长官 , 刘建华 , 秦美镇 , 吕英波 , 阎玉芹 . 初始应力状态对薄壁件双侧滚压影响规律[J]. 航空学报, 2023 , 44(10) : 427415 -427415 . DOI: 10.7527/S1000-6893.2022.27415
The bilateral rolling process as a correction method is widely used in the production of aerospace structural parts. However, because the evolution mechanism of the internal physical and mechanical properties of the material is unclear, such as the coupling effect of the original stress field and the rolling stress field, the improvement of the stability of the rolling correction process is limited. So, a verified bilateral rolling finite element model of T-shaped part with 7050-T7451 aluminum alloy under three initial stress states, i.e., no initial stress, only blank stress, coupling blank stress and machining stress, was established, and the rolling deformation and residual stress distribution of the part are obtained. The results show that the maximum bending deformation caused by rolling is 2.56×10-1, 2.76×10-1, 2.49×10-1 mm respectively under the three initial stress states. The influence degree of blank stress on rolling deformation is about 7.8%. On this basis, the influence of machining stress is about 9.8%, and the action direction is opposite. The residual stress in the rolling area is mainly concentrated in the rolling direction and vertical rolling direction, and the surface is usually compressive stress, which reaches the maximum value on the subsurface. In addition, the initial stress could cause the stress value increase within the full thickness in rolling direction, while, the initial stress mainly causes the change of the surface stress in vertical rolling direction. Finally, the evolution of the strain-stress field during the rolling process was analyzed, and the mechanism of the blank stress and the machining stress effect on the rolling process were revealed. The results have important significance for further improving the rolling correction accuracy.
1 | 郑耀辉, 赵明月, 刘娜, 等. 2024铝合金结构件残余应力的评估与变形预测[J]. 组合机床与自动化加工技术, 2020(1): 54-58. |
ZHENG Y H, ZHAO M Y, LIU N, et al. Evaluation of residual stress and deformation prediction of 2024 aluminum alloy structural parts[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(1): 54-58 (in Chinese). | |
2 | MASOUDI S, AMINI S, SAEIDI E, et al. Effect of machining-induced residual stress on the distortion of thin-walled parts[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1): 597-608. |
3 | GAO H J, ZHANG Y D, WU Q, et al. Investigation on influences of initial residual stress on thin-walled part machining deformation based on a semi-analytical model[J]. Journal of Materials Processing Technology, 2018, 262: 437-448. |
4 | 廖凯, 张萧笛, 刘义鹏, 等. 铝合金薄壁框架件加工变形的应力分布研究[J]. 材料科学与工艺, 2016, 24(6): 45-50. |
LIAO K, ZHANG X D, LIU Y P, et al. Study on stress distribution resulted in processing deformation for Al-alloy thin-wall component[J]. Materials Science and Technology, 2016, 24(6): 45-50 (in Chinese). | |
5 | FAN L X, LI L, YANG Y F, et al. Control of machining distortion stability in machining of monolithic aircraft parts[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(11): 3189-3199. |
6 | WANG S Q, HE C L, CAO Z M. Machining distortion in the milling of multi-frame components[J]. Journal of Manufacturing Processes, 2021, 68: 1158-1175. |
7 | LI X Y, LI L, YANG Y F, et al. Variance-based sensitivity analysis for the influence of residual stress on machining deformation[J]. Journal of Manufacturing Processes, 2021, 68: 1072-1085. |
8 | WEBER D, KIRSCH B, CHIGHIZOLA C R, et al. Analysis of machining-induced residual stresses of milled aluminum workpieces, their repeatability, and their resulting distortion[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(4): 1089-1110. |
9 | CERUTTI X, MOCELLIN K. Parallel finite element tool to predict distortion induced by initial residual stresses during machining of aeronautical parts[J]. International Journal of Material Forming, 2015, 8(2): 255-268. |
10 | CERUTTI X, MOCELLIN K, HASSINI S, et al. Methodology for aluminium part machining quality improvement considering mechanical properties and process conditions[J]. CIRP Journal of Manufacturing Science and Technology, 2017, 18: 18-38. |
11 | 黄晓明, 孙杰, 李剑峰. 基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J]. 机械工程学报, 2017, 53(9): 201-208. |
HUANG X M, SUN J, LI J F. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolvement[J]. Journal of Mechanical Engineering, 2017, 53(9): 201-208 (in Chinese). | |
12 | 张洪伟, 张以都, 吴琼, 等. 航空整体结构件加工变形校正技术研究[J]. 兵工学报, 2010, 31(8): 1072-1077. |
ZHANG H W, ZHANG Y D, WU Q, et al. Research on deformation straightening for aeronautical monolithic components[J]. Acta Armamentarii, 2010, 31(8): 1072-1077 (in Chinese). | |
13 | 王中秋. 航空整体结构件加工变形滚压校正理论及方法研究[D]. 济南: 山东大学, 2009. |
WANG Z Q. Study on theory and approach for correcting aerospace monolithic component due to machining distortion using rolling method[D]. Jinan: Shandong University, 2009 (in Chinese). | |
14 | 路来骁, 孙杰, 韩雄, 等. 基于能量理论的航空整体结构件滚压变形校正载荷预测方法[J]. 航空学报, 2017, 38(12): 421326. |
LU L X, SUN J, HAN X, et al. Load prediction method of rolling distortion correction for monolithic aeronautical components based on energy theory[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 421326 (in Chinese). | |
15 | 杨东, 刘战强, 贺蒙, 等. 钛合金TC4低塑性滚压表面完整性的实验研究[J]. 华南理工大学学报(自然科学版), 2017, 45(1): 137-144. |
YANG D, LIU Z Q, HE M, et al. Experimental investigation into surface integrity of titanium TC4 after low-plasticity burnishing[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(1): 137-144 (in Chinese). | |
16 | 李宁, 夏伟, 赵婧, 等. 滚压诱导超细晶纯铁表层及其耐腐蚀性能[J]. 华南理工大学学报(自然科学版), 2014, 42(9): 1-6. |
LI N, XIA W, ZHAO J, et al. Burnishing-induced ultra-fine grained pure iron surface layer and its corrosion resistance[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(9): 1-6 (in Chinese). | |
17 | 赵吉中, 徐祥, 丁立, 等. 高速列车车轮踏面滚压强化有限元分析[J]. 西南交通大学学报, 2020, 55(6): 1337-1347. |
ZHAO J Z, XU X, DING L, et al. Finite element analysis of rolling strengthening process for wheel tread of high-speed trains[J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1337-1347 (in Chinese). | |
18 | 胡兴远, 王成, 李开发, 等. 预加载荷对表面机械滚压强化残余应力影响的数值研究[J]. 机电工程, 2021, 38(8): 1064-1069. |
HU X Y, WANG C, LI K F, et al. Numerical study of effects of preload on the residual stresses induced by surface mechanical rolling treatment[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(8): 1064-1069 (in Chinese). | |
19 | ZHENG J X, ZHU L X, GUO Y L, et al. Modeling, simulation, and prediction of surface topography in two-dimensional ultrasonic rolling 7075 Al-alloy[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(1): 309-320. |
20 | 梁志强, 陈一帆, 栾晓圣, 等. 超高强度钢强力滚压残余应力仿真与试验研究[J]. 表面技术, 2021, 50(1): 413-421, 431. |
LIANG Z Q, CHEN Y F, LUAN X S, et al. Simulation and experimental study on residual stress of ultra-high strength steel under powerful rolling[J]. Surface Technology, 2021, 50(1): 413-421, 431 (in Chinese). | |
21 | 于鑫, 孙杰, 熊青春, 等. 7050-T7451铝合金铣削加工表面材料特性与本构关系模型的建立[J]. 中国有色金属学报, 2015, 25(11): 2982-2989. |
YU X, SUN J, XIONG Q C, et al. Milling surface properties of 7050-T7451 aluminum alloy and establishment of constitutive model[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 2982-2989 (in Chinese). | |
22 | YANG Y, LI M, LI K R. Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9): 1803-1811. |
23 | 周长安. 铝合金预拉伸板材残余应力测试及工件变形预测系统开发[D]. 济南: 山东大学, 2014: 13-31. |
ZHOU C A. Study on measuring the residual stress of pre-stretched aluminum alloy plates and developing the system for predicting machining deformation[D]. Jinan: Shandong University, 2014: 13-31 (in Chinese). | |
24 | PRIME M B. Residual stress measurement by successive extension of a slot: the crack compliance method[J]. Applied Mechanics Reviews, 1999, 52(2): 75-96. |
25 | PRIME M B, HILL M R. Residual stress, stress relief, and inhomogeneity in aluminum plate[J]. Scripta Materialia, 2002, 46(1): 77-82. |
/
〈 |
|
〉 |