电子电气工程与控制

带有输入受限的无人机精确编队合围容错控制

  • 刘伯健 ,
  • 李爱军 ,
  • 郭永 ,
  • 王长青
展开
  • 西北工业大学 自动化学院,西安 710129
.E-mail: guoyong@nwpu.edu.cn

收稿日期: 2022-05-11

  修回日期: 2022-05-29

  录用日期: 2022-06-29

  网络出版日期: 2022-07-08

基金资助

国家自然科学基金(61803307);航空科学基金(201901053004)

Fault-tolerant containment control for precise formation of UAVs with input saturation

  • Bojian LIU ,
  • Aijun LI ,
  • Yong GUO ,
  • Changqing WANG
Expand
  • School of Automation,Northwestern Polytechnical University,Xi’an 710129,China

Received date: 2022-05-11

  Revised date: 2022-05-29

  Accepted date: 2022-06-29

  Online published: 2022-07-08

Supported by

National Natural Science Foundation of China(61803307);Aeronautical Science Foundation of China(201901053004)

摘要

针对带有输入受限和作动器故障的无人机精确编队合围控制问题,提出了一种基于合围控制架构的通信拓扑设计算法和一种基于Nussbaum函数的分布式自适应有限时间容错控制算法。2种算法的结合克服了现有合围控制无法精确控制跟随者队形的缺陷。首先,利用凸图形和合围控制通信拓扑的性质,针对预设的精确跟随者队形,提出了一种合理的机间通信拓扑设计方法;其次,利用一种新颖的光滑函数对非对称输入受限信号进行平滑处理,将存在输入受限和作动器故障的无人机合围控制问题转化为变增益控制问题;然后,采用基于Nussbaum函数的控制器的设计方法对变增益控制问题进行处理;最终,通过李雅普诺夫稳定性理论和有限时间理论对所提出的控制策略进行了有限时间稳定性分析,并且通过数字仿真对所提出的算法的有效性进行了验证。

本文引用格式

刘伯健 , 李爱军 , 郭永 , 王长青 . 带有输入受限的无人机精确编队合围容错控制[J]. 航空学报, 2023 , 44(9) : 327414 -327414 . DOI: 10.7527/S1000-6893.2022.27414

Abstract

To solve the problem of containment control for precise formation of UAVs with input saturation and actuator failure, a communication topology design algorithm based on containment control architecture and a distributed adaptive finite-time fault-tolerant control algorithm based on Nussbaum function are proposed. The combination of the two algorithms overcomes the defect that the existing containment control cannot make the followers converge to the pre-defined formation. Firstly, using the knowledge of convex figures and communication topology of containment control, a communication topology design algorithm is proposed to make followers form precise formation. Secondly, by utilizing a novel hyperbolic tangent function to smooth the constrained input, the containment control issue for UAVs with input saturation and actuator fault can be turned into a variable gain control problem. Then, the Nussbaum-based control algorithm is utilized to solve the issue. Finally, the finite-time convergence of the error systems and the practicability of the control law are verified by Lyapunov stability analysis and numerical simulations.

参考文献

1 CHANG K, MA D L, HAN X B, et al. Lyapunov vector-based formation tracking control for unmanned aerial vehicles with obstacle/collision avoidance[J]. Transactions of the Institute of Measurement and Control202042(5): 942-950.
2 WANG X K, YU Y G, LI Z K. Distributed sliding mode control for leader-follower formation flight of fixed-wing unmanned aerial vehicles subject to velocity constraints[J]. International Journal of Robust and Nonlinear Control202131(6): 2110-2125.
3 SUN Y B, XIA K W, ZOU Y, et al. Distributed output-feedback formation tracking control for clustered quadrotors[J]. IEEE Transactions on Aerospace and Electronic Systems202258(3): 1894-1905.
4 WU Y, GOU J Z, HU X T, et al. A new consensus theory-based method for formation control and obstacle avoidance of UAVs[J]. Aerospace Science and Technology2020107: 106332.
5 LIU Y C, BUCKNALL R. A survey of formation control and motion planning of multiple unmanned vehicles[J]. Robotica201836(7): 1019-1047.
6 BAI G H, LI Y J, FANG Y N, et al. Network approach for resilience evaluation of a UAV swarm by considering communication limits[J]. Reliability Engineering & System Safety2020193: 106602.
7 YU Z Q, LIU Z X, ZHANG Y M, et al. Distributed finite-time fault-tolerant containment control for multiple unmanned aerial vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems202031(6): 2077-2091.
8 WANG X Y, LI S H, SHI P. Distributed finite-time containment control for double-integrator multiagent systems[J]. IEEE Transactions on Cybernetics201444(9): 1518-1528.
9 WANG D, ZHANG N, WANG J L, et al. Cooperative containment control of multiagent systems based on follower observers with time delay[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems201747(1): 13-23.
10 WANG Y J, SONG Y D, REN W. Distributed adaptive finite-time approach for formation-containment control of networked nonlinear systems under directed topology[J]. IEEE Transactions on Neural Networks and Learning Systems201829(7): 3164-3175.
11 魏志强, 翁哲鸣, 化永朝, 等. 切换拓扑下异构无人集群编队-合围跟踪控制[J]. 航空学报202344(2): 258-273.
  WEI Z Q, WENG Z M, HUA Y Z, et al. Formation-containment tracking control for heterogeneous unmanned swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica202344(2): 258-273 (in Chinese).
12 LIANG S J, ZHANG S R, HUANG Y P, et al. Data-driven fault diagnosis of FW-UAVs with consideration of multiple operation conditions[J]. ISA Transactions2022126: 472-485.
13 IJAZ S, CHEN F Y, TARIQ HAMAYUN M. A new actuator fault-tolerant control for Lipschitz nonlinear system using adaptive sliding mode control strategy[J]. International Journal of Robust and Nonlinear Control202131(6): 2305-2333.
14 ZOU Y, XIA K W. Robust fault-tolerant control for underactuated takeoff and landing UAVs[J]. IEEE Transactions on Aerospace and Electronic Systems202056(5): 3545-3555.
15 ZOU Y, XIA K W, HE W. Adaptive fault-tolerant distributed formation control of clustered vertical takeoff and landing UAVs[J]. IEEE Transactions on Aerospace and Electronic Systems202258(2): 1069-1082.
16 XU D Z, JIANG B, SHI P. Robust NSV fault-tolerant control system design against actuator faults and control surface damage under actuator dynamics[J]. IEEE Transactions on Industrial Electronics201562(9): 5919-5928.
17 HUO B Y, XIA Y Q, YIN L J, et al. Fuzzy adaptive fault-tolerant output feedback attitude-tracking control of rigid spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems201747(8): 1898-1908.
18 LIU K, WANG R J, WANG X D, et al. Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbances[J]. Aerospace Science and Technology2021115: 106790.
19 YU Z Q, ZHANG Y M, JIANG B, et al. Nussbaum-based finite-time fractional-order backstepping fault-tolerant flight control of fixed-wing UAV against input saturation with hardware-in-the-loop validation[J]. Mechanical Systems and Signal Processing2021153: 107406.
20 UTKIN V I, POZNYAK A S. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method[J]. Automatica201349(1): 39-47.
21 YU Z Q, QU Y H, ZHANG Y M. Fault-tolerant containment control of multiple unmanned aerial vehicles based on distributed sliding-mode observer[J]. Journal of Intelligent & Robotic Systems201993(1): 163-177.
22 MA L, ZONG G D, ZHAO X D, et al. Observed-based adaptive finite-time tracking control for a class of nonstrict-feedback nonlinear systems with input saturation[J]. Journal of the Franklin Institute2020357(16): 11518-11544.
23 ZHAO S Y, PAN Y N, DU P H, et al. Adaptive control for non-affine nonlinear systems with input saturation and output dead zone[J]. Applied Mathematics and Computation2020386: 125506.
24 CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica201147(3): 452-465.
25 LU K F, XIA Y Q, FU M Y. Controller design for rigid spacecraft attitude tracking with actuator saturation[J]. Information Sciences2013220: 343-366.
26 ZOU A M, DE RUITER A H J, KUMAR K D. Comment on “Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints”[J] Automatica2019100: 417-418.
27 SU Y. Comments on “Controller design for rigid space-craft attitude tracking with actuator saturation”[J]. Information Sciences2016342: 150-152.
28 HU Q L, SHAO X D, ZHANG Y M, et al. Nussbaum-type function-based attitude control of spacecraft with actuator saturation[J]. International Journal of Robust and Nonlinear Control201828(8): 2927-2949.
29 YU Z Q, ZHANG Y M, JIANG B, et al. Fault-tolerant time-varying elliptical formation control of multiple fixed-wing UAVs for cooperative forest fire monitoring[J]. Journal of Intelligent & Robotic Systems2021101(3): 48.
30 YU J P, SHI P, LIN C, et al. Adaptive neural command filtering control for nonlinear MIMO systems with saturation input and unknown control direction[J]. IEEE Transactions on Cybernetics202050(6): 2536-2545.
31 SUN L. Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[J]. IEEE Transactions on Industrial Electronics202067(4): 3107-3115.
文章导航

/