材料工程与机械制造

激光熔覆TiC x 增强钛基复合涂层组织与增强相第一性原理研究

  • 张志强 ,
  • 于子鸣 ,
  • 张天刚 ,
  • 杨倩 ,
  • 王浩
展开
  • 1.中国民航大学 航空工程学院,天津 300300
    2.天津职业技术师范大学 机械工程学院,天津 300222
.E-mail: wanghao022tj@163.com

收稿日期: 2022-04-19

  修回日期: 2022-05-28

  录用日期: 2022-06-27

  网络出版日期: 2022-07-08

基金资助

国家自然科学基金(51905536);航空科学基金(2020Z049067002);天津市教委教研计划(2020KJ020);天津市技术创新引导专项基金(21YDTPJC00430)

Microstructure of TiC x reinforced Ti-based composite coating prepared by laser cladding and first principle study on reinforced phase

  • Zhiqiang ZHANG ,
  • Ziming YU ,
  • Tiangang ZHANG ,
  • Qian YANG ,
  • Hao WANG
Expand
  • 1.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China
    2.Mechanical Science and Engineering College,Tianjin University of Technology and Education,Tianjin 300222,China

Received date: 2022-04-19

  Revised date: 2022-05-28

  Accepted date: 2022-06-27

  Online published: 2022-07-08

Supported by

National Natural Science Foundation of China(51905536);Aeronautical Science Foundation of China(2020Z049067002);Scientific Research Project of Tianjin Education Commission(2020KJ020);Guidance Special Fund for Technical Innovation of Tianjin(21YDTPJC00430)

摘要

采用同轴送粉激光熔覆技术原位合成了碳化钛(TiC x )增强钛基复合涂层。运用X射线衍射仪、扫描电镜、能谱仪、显微硬度计等表征与测试方法,同时结合第一性原理研究了NiCr-Cr3C2添加量与复合涂层微观组织和显微硬度的内在关联性,探究了C/Ti原子比对TiC x 力学性能及热力学稳定性的影响规律。结果表明复合涂层的微观组织主要由β-Ti型有序固溶体(基体相)和TiC x (增强相)组成。NiCr-Cr3C2添加量对复合涂层中碳化钛的含量、尺度、形态特征有显著影响,且复合涂层上部和下部区域的碳化钛组织存在显著差异。TiC x 的C/Ti原子比与其形态具有高度相关性,复合涂层中TiC x 主要包括异形TiC0.2-0.4、树枝状TiC0.4-0.6、花瓣状TiC0.6-0.8及类球状TiC0.8-1.0。此外随NiCr-Cr3C2添加量增加,复合涂层硬度显著提高,主要归因于更多TiC x 形成、TiC x 中C含量增加及更加显著的固溶强化作用。基于第一性原理的分析表明随C/Ti原子比增加,TiC x 体积模量、剪切模量、拉伸模量及硬度显著提高,而泊松比逐渐减小,且随TiC x 中C原子含量增加,其金属性减弱,脆性增加,但晶体结构稳定性及热力学稳定性显著增强。

本文引用格式

张志强 , 于子鸣 , 张天刚 , 杨倩 , 王浩 . 激光熔覆TiC x 增强钛基复合涂层组织与增强相第一性原理研究[J]. 航空学报, 2023 , 44(8) : 427294 -427294 . DOI: 10.7527/S1000-6893.2022.27294

Abstract

Titanium carbide (TiC x ) reinforced titanium matrix composite coating was synthesized in situ by coaxial powder feeding laser cladding technology. X-ray diffraction, scanning electron microscope, energy dispersive spectrometer, microhardness tester, and other characterization and testing methods were used. Combined with first principles, the intrinsic relationship between the addition of NiCr-Cr3C2, and the microstructure and microhardness of the composite coating was studied. Moreover, the influence of C/Ti atomic ratio on the mechanical properties and thermodynamic stability of TiC x was explored. The results showed that the microstructure of the composite coating is mainly composed of β-Ti ordered solid solution (matrix phase) and TiC x (reinforcing phase). The addition of NiCr-Cr3C2 has significant effect on the quantity, scale and morphological characteristics of titanium carbide in the composite coating, and the microstructure of titanium carbide in the upper and lower areas of the composite coating is significantly different. The C/Ti atomic ratio of TiC x is highly correlated with its morphology. TiC x in composite coating mainly includes irregular TiC0.2-0.4, dendritic TiC0.4-0.6, petal TiC0.6-0.8, and spherical TiC0.8-1.0. In addition, with the increase of the addition of NiCr-Cr3C2, the hardness of the composite coating increased significantly, which is mainly due to the formation of more TiC x, the increase of C content in TiC x and the more remarkable solid solution strengthening effect. First-principles analysis showed that with the increase of C/Ti atomic ratio, the bulk modulus, shear modulus, tensile modulus, and hardness of TiC x increased significantly, while Poisson’s ratio decreased gradually. In addition, with the increase of C atom content in TiC x, its metallicity decreases and its brittleness increases, but its crystal structure and thermodynamic stability significantly increase.

参考文献

1 谭金花, 孙荣禄, 牛伟, 等. TC4合金激光熔覆材料的研究现状[J]. 材料导报202034(15): 15132-15137.
  TAN J H, SUN R L, NIU W, et al. Research status of TC4 alloy laser cladding materials[J]. Materials Reports202034(15): 15132-15137 (in Chinese).
2 丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报201940(6): 022763.
  DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engines[J]. Acta Aeronautica et Astronautica Sinica201940(6): 022763 (in Chinese).
3 REVANKAR G D, SHETTY R, RAO S S, et al. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process[J]. Journal of Materials Research and Technology20176(1): 13-32.
4 POLLOCK T M. Alloy design for aircraft engines[J]. Nature Materials201615(8): 809-815.
5 刘家奇, 宋明磊, 陈传忠, 等. 钛合金表面激光熔覆技术的研究进展[J]. 金属热处理201944(5): 87-96.
  LIU J Q, SONG M L, CHEN C Z, et al. Research progress of laser cladding technology on surface of titanium alloy[J]. Heat Treatment of Metals201944(5): 87-96 (in Chinese).
6 DE OLIVEIRA U, OCELíK V, DE HOSSON J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface and Coatings Technology2005197(2-3): 127-136.
7 曲翠翠. 预置涂层厚度对激光熔覆涂层组织和性能的影响研究[D]. 上海: 上海工程技术大学, 2016.
  QU C C. Research on the effect of the pre-placed layer thickness on microstructure and properties of laser-clad coating[D]. Shanghai: Shanghai University of Engineering Science, 2016 (in Chinese).
8 张蕾涛, 刘德鑫, 张伟樯, 等. 钛合金表面激光熔覆涂层的研究进展[J]. 表面技术202049(8): 97-104.
  ZHANG L T, LIU D X, ZHANG W Q, et al. Research progress of laser cladding coating on titanium alloy surface[J]. Surface Technology202049(8): 97-104 (in Chinese).
9 张志强, 杨凡, 张宏伟, 等. 含稀土TiC x 增强钛基激光熔覆层组织与耐磨性[J]. 航空学报202142(7): 624115.
  ZHANG Z Q, YANG F, ZHANG H W, et al. Microstructure and wear resistance of TiC x reinforced Ti-based laser cladding coating with rare earth[J]. Acta Aeronautica et Astronautica Sinica202142(7): 624115 (in Chinese).
10 张志强, 杨凡, 张天刚, 等. 激光熔覆碳化钛增强钛基复合涂层研究进展[J]. 表面技术202049(10): 138-151, 168.
  ZHANG Z Q, YANG F, ZHANG T G, et al. Research progress of laser cladding titanium carbide reinforced titanium-based composite coating[J]. Surface Technology202049(10): 138-151, 168 (in Chinese).
11 ZHANG Z Q, YANG F, ZHANG H W, et al. Influence of CeO2 addition on forming quality and microstructure of TiC x -reinforced CrTi4-based laser cladding composite coating[J]. Materials Characterization2021171: 110732.
12 DONG B X, YANG H Y, QIU F, et al. Design of TiC x nanoparticles and their morphology manipulating mechanisms by stoichiometric ratios: Experiment and first-principle calculation[J]. Materials & Design2019181: 107951.
13 JIN S B, SHEN P, LIN Q L, et al. Growth mechanism of TiC x during self-propagating high-temperature synthesis in an Al-Ti-C system[J]. Crystal Growth & Design201010(4): 1590-1597.
14 NIE J F, LIU X F, MA X G. Influence of trace boron on the morphology of titanium carbide in an Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds2010491(1-2): 113-117.
15 SONG M S, HUANG B, ZHANG M X, et al. Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al-Ti-C elemental powders[J]. International Journal of Refractory Metals and Hard Materials200927(3): 584-589.
16 贺战文, 康少波. 基于CASTEP软件的TiC x 结构构建及性能研究[J]. 武汉轻工大学学报201635(4): 43-46.
  HE Z W, KANG S B. Study of structure & properties of the nonstoichiometric of TiC x based on CASTEP software[J]. Journal of Wuhan Polytechnic University201635(4): 43-46 (in Chinese).
17 PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters199677(18): 3865-3868.
18 HEIDARPOUR A, AGHAMOHAMMADI H, JAMSHIDI R, et al. The shape evolution of TiC x prepared by mechanical alloying of Ti-Al-C system after HF treatment[J]. Ceramics International201945(4): 4653-4660.
19 ZHAO J J, WINEY J M, GUPTA Y M. First-principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry[J]. Physical Review B: Condensed Matter and Materials Physics200775(9): 094105.
20 孙金峰. MA制备非化学计量比TiC x 和TiN x 及其烧结特性的研究[D]. 秦皇岛: 燕山大学, 2010.
  SUN J F. Synthesized nonstoichiometric TiC x and TiN x powders by MA and study of the powders sintering property[D]. Qinhuangdao: Yanshan University, 2010 (in Chinese).
21 BOUHEMADOU A, GHEBOULI M A, GHEBOULI B, et al. Structural, elastic, electronic and lattice dynamical properties of III-P quaternary alloys matched to AlP[J]. Materials Science in Semiconductor Processing201316(3): 718-726.
22 王根, 李新梅. 第一性原理计算Cu、Co含量对 CoCuFeNi系高熵合金的影响[J]. 功能材料202051(3): 3189-3195.
  WANG G, LI X M. Effects of Cu, Co contents on CoCuFeNi system high-entropy alloys by the first principle calculation[J]. Journal of Functional Materials202051(3): 3189-3195 (in Chinese).
23 李继弘, 孙乾, 郑兴荣, 等. YbB6晶体结构、状态方程、弹性和热学性质的第一性原理计算[J]. 四川大学学报(自然科学版)202057(2): 352-359.
  LI J H, SUN Q, ZHENG X R, et al. Structure, equation of states, elastic and thermal properties of YbB6 crystal: first-principles calculations[J]. Journal of Sichuan University (Natural Science Edition)202057(2): 352-359 (in Chinese).
24 高岩, 毛萍莉, 刘正, 等. 金属间化合物MgZn2、Mg2Y和Mg3Zn3Y2弹性性质的第一性原理计算[J]. 沈阳师范大学学报(自然科学版)201937(3): 228-231.
  GAO Y, MAO P L, LIU Z, et al. Elasticproperty of MgZn2, Mg2Y and Mg3Zn3Y2 intermetallic compounds: First-principles calculation[J]. Journal of Shenyang Normal University (Natural Science Edition)201937(3): 228-231 (in Chinese).
25 邓世杰, 赵宇宏, 侯华, 等. 高压下Ti2AlXX=C, N)的结构、力学性能及热力学性质[J]. 物理学报201766(14): 407-412.
  DENG S J, ZHAO Y H, HOU H, et al. Structural, mechanical, and thermodynamic properties of Ti2AlXX = C, N) at high pressure[J]. Acta Physica Sinica201766(14): 407-412 (in Chinese).
26 BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices[J]. American Journal of Physics195523(7): 474.
27 VASANTHAKUMAR K, KARTHISELVA N S, CHAWAKE N M, et al. Formation of TiC x during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures[J]. Journal of Alloys and Compounds2017709: 829-841.
28 GUEMMAZ M, MOSSER A, BOUDOUKHA L, et al. Ion beam synthesis of non-stoichiometric titanium carbide: Composition structure and nanoindentation studies[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms1996111(3): 263-270
29 易怀星, 王臣菊, 孙斌, 等. 高温高压下碳化钨晶体的结构、力学、电子、光学以及热力学性能的第一性原理计算[J]. 原子与分子物理学报202037(2): 239-249.
  YI H X, WANG C J, SUN B, et al. First-principles calculation of the structure, mechanical, electronic, optical and thermodynamic properties of tungsten carbide crystals at high temperature and high pressure[J]. Journal of Atomic and Molecular Physics202037(2): 239-249 (in Chinese).
30 YIN W J, WEI S H, AL-JASSIM M M, et al. Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory[J]. Physical Review B201183(15): 155102.
31 肖江波, 尧军平, 孙众, 等. TiC/Mg复合材料界面稳定性的第一性原理计算[J]. 材料热处理学报202041(5): 28-33.
  XIAO J B, YAO J P, SUN Z, et al. First principle calculation of interfacial stability of TiC/Mg composites[J]. Transactions of Materials and Heat Treatment202041(5): 28-33 (in Chinese).
文章导航

/