基于声模态分解的风扇叶盘同步振动辨识
收稿日期: 2022-02-23
修回日期: 2022-05-07
录用日期: 2022-06-20
网络出版日期: 2022-07-08
基金资助
国家自然科学基金(52075414)
Synchronous vibration identification of fan blisk based on acoustic mode decomposition
Received date: 2022-02-23
Revised date: 2022-05-07
Accepted date: 2022-06-20
Online published: 2022-07-08
Supported by
National Natural Science Foundation of China(52075414)
采用非接触式非侵入式的测量方法实现航空发动机叶盘振动测量,对发动机研制、试验、运行安全具有重要意义。提出基于声模态分解的叶盘同步振动辨识方法,在某三级风扇试验器的进气道布置环形声阵列,作为参照并在动叶布置若干应变片,开展升降速试验。分析声压信号的叶片通过频率随转速的变化规律,对动叶一阶通过频率下的声阵列信号进行声模态分解,结合应变片实测的动叶坎贝尔图,建立主导声模态数与叶盘节径数的映射关系。声场和动应力测试结果表明:当主导声模态数与叶盘节径相等时,动叶发生共振现象,此时可有效地对风扇叶盘同步振动进行辨识;动叶与前后叶排静叶都存在转静干涉现象,声压信号呈现为窄带宽频,形成声模态离散,造成动叶表现为多模态振动;声压信号是叶片不同振动模态的气动载荷分布的综合反映,具有好的灵敏性和完备性,可实现航空发动机动叶非接触式非侵入式振动测量。
文璧 , 乔百杰 , 李泽芃 , 李镇东 , 王艳丰 , 陈雪峰 . 基于声模态分解的风扇叶盘同步振动辨识[J]. 航空学报, 2023 , 44(6) : 227066 -227066 . DOI: 10.7527/S1000-6893.2022.27066
It is important to apply the non-contact and non-invasive approach to the vibration measurement of aero-engine blisks in aero-engine development, experiments and safety operation. An acoustic mode decomposition based approach is proposed to realize the identification of synchronous vibration of the blisk. The run-up and run-down experiment of a three-stage fan test rig is conducted, where the ring microphone array is placed at the inlet duct and several strain gauges are glued on the rotor blade. The Blade Passing Frequency (BPF) of the acoustic pressure signal is analyzed with respect to the rotational speed. With the mode decomposition at BPF and the Campbell diagram, the mapping relationship between the dominant mode order and the nodal diameter number of the blisk is established. The results of acoustic and vibration tests show that the resonance of the blade occurs when the number of the dominant mode order equals to the nodal diameter number of the blisk, where the proposed approach can effectively identify the synchronous vibration parameters of the blisk; the rotor blades have interacted with both the forward and backward rows of stator vanes, where the generated acoustic modes hold broadband characteristics and the mode scattering phenomenon occurs, leading to the multi-modal vibration of the rotor blade; the acoustic pressure can sensitively mirror different modes of blade vibration, and hence can be employed for the non-contact and non-invasive measurement of the aero-engine vibration.
1 | 王建军, 姚建尧, 李其汉. 刚度随机失谐叶盘结构概率模态特性分析[J]. 航空动力学报, 2008, 23(2): 256-262. |
WANG J J, YAO J Y, LI Q H. Probability characteristics of vibratory mode of bladed disk assemblies with random stiffness mistuning[J]. Journal of Aerospace Power, 2008, 23(2): 256-262 (in Chinese). | |
2 | 王延荣, 田爱梅. 叶/盘结构振动分析中几个问题的探讨[J]. 推进技术, 2002, 23(3): 233-236. |
WANG Y R, TIAN A M. Several issues in the implementation of vibration analysis of bladed disk[J]. Journal of Propulsion Technology, 2002, 23(3): 233-236 (in Chinese). | |
3 | 吕文林. 航空发动机强度计算[M]. 北京:国防工业出版社, 1988: 83-110. |
LV W L. Aero-engine strength calculation[M]. Beijing: National Defense Industry Press, 1988: 83-110 (in Chinese). | |
4 | 曾强. 压气机转子叶片流固耦合计算及软件集成研究[D]. 南京: 南京航空航天大学, 2006: 10-15. |
ZENG Q. Research on fluid-solid interaction and software integration in axial compressor blade[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006: 10-15 (in Chinese). | |
5 | GUO H, DUAN F, ZHANG J. Blade resonance parameter identification based on tip-timing method without the once-per revolution sensor[J]. Mechanical Systems and Signal Processing. 2016, 66-67: 625-639. |
6 | PAN M H, YANG Y M, GUAN F J, et al. Sparse representation based frequency detection and uncertainty reduction in blade tip timing measurement for multi-mode blade vibration monitoring[J]. Sensors (Basel, Switzerland), 2017, 17(8): 1745. |
7 | DIAMOND D H, HEYNS P S, OBERHOLSTER A J. Improved blade tip timing measurements during transient conditions using a state space model[J]. Mechanical Systems and Signal Processing, 2019, 122:555-579. |
8 | CHEN K, WANG W, ZHANG X, et al. New step to improve the accuracy of blade tip timing method without once per revolution[J]. Mechanical Systems and Signal Processing. 2019, 134: 106321. |
9 | ZHANG X, WANG Y, JIANG X, et al. Parameter identification and sensor configuration in tip timing for asynchronous vibration of a deformed blade with finite element method simulated data verification[J]. Journal of Vibration and Acoustics, 2020, 142(2):021010.1-021010.13. |
10 | INOUE M, KUROUMARU M, YOSHIDA S, et al. Effect of tip clearance on stall evolution process in a low-speed axial compressor stage[C]∥ASME Turbo Expo: Power for Land, Sea, & Air.New York:ASME,2004. |
11 | 徐纲, 李军, 朱俊强, 等. 压气机系统的非线性对失速模式的影响[J]. 西北工业大学学报, 2000,18(4): 572-578. |
XU G, LI J, ZHU J Q, et al. An improvement on Moore-Greitzer stall model[J]. Journal of Northwestern Polytechnical University, 2000, 18(4): 572-578 (in Chinese). | |
12 | 李军, 徐纲, 朱俊强, 等. 轴流压气机失速初始扰动形式的实验研究[J]. 航空动力学报, 1997, 12(1): 17-20. |
LI J, XU G, ZHU J Q, et al. Initial disturbance forms of rotating stall in axial flow compressor[J]. Journal of Aerospace Power, 1997, 12(1): 17-20 (in Chinese). | |
13 | 曹传军, 况成玉, 姜逸轩. 高负荷轴流压气机喘振时叶片动应力[J]. 科学技术与工程, 2021, 21(27): 11850-11857. |
CAO C J, KUANG C Y, JIANG Y X. Surge on blade dynamic stress of high loading axial compressor[J]. Science Technology and Engineering, 2021, 21(27): 11850-11857 (in Chinese). | |
14 | 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010: 1-8. |
QIAO W Y. Aeroacoustics of aero-engine[M]. Beijing: Beihang University Press, 2010: 1-8 (in Chinese). | |
15 | TYLER J M, SOFRIN T G. Axial flow compressor noise studies[J]. Society of Automotive Engineers Transactions, 1962, 70: 309-332. |
16 | 王同庆, 吴怀宇, 彭锋. 高速压气机不稳定流动声测量技术研究[J]. 工程热物理学报, 2004, 25(1): 56-58. |
WANG T Q, WU H Y, PENG F. The study on the acoustic measurement technology of instable flow in the high speed compressor[J]. Journal of Engineering Thermophysics, 2004, 25(1): 56-58 (in Chinese). | |
17 | ZEROBIN S, BADER P, FAUSTMANN C, et al. Numerical and experimental results of a turning mid turbine frame with embedded design in terms of acoustic mode analysis[C]∥ 22nd AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2016. |
18 | 李泽芃, 乔百杰, 文璧, 等. 基于声阵列信号的风扇喘振先兆特征识别[J]. 航空动力学报, 2021, 36(5): 923-934. |
LI Z P, QIAO B J, WEN B, et al. Identification of fan surge precursors based on acoustic array signals[J]. Journal of Aerospace Power, 2021, 36(5): 923-934 (in Chinese). | |
19 | HOLZINGER F, WARTZEK F, SCHIFFER H P, et al. Self-excited blade vibration experimentally investigated in transonic compressors: acoustic resonance[J]. Journal of Turbomachinery, 2016, 138(4): 041001. |
20 | 王良锋, 乔渭阳, 纪良, 等. 轴流风扇/压气机管道周向声模态的测量[J]. 航空动力学报, 2014, 29(4): 917-926. |
WANG L F, QIAO W Y, JI L, et al. In-duct circumferential acoustic mode measurement of axial fan/compressor[J]. Journal of Aerospace Power, 2014, 29(4): 917-926 (in Chinese). | |
21 | 中国航空工业总公司发动机系统工程局. 航空涡喷、涡扇发动机结构设计准则研究报告[R]. 北京: 中国航空工业总公司发动机系统工程局, 1997. |
Aviation Industry Corporation of China Engine System Engineering Bureau. Research report on structural design criteria of aero-turbojet and turbofan engines[R]. Beijing: Aviation Industry Corporation of China Engine System Engineering Bureau, 1997 (in Chinese). | |
22 | 航空发动机设计手册总编委会. 航空发动机设计手册:第18册: 叶片轮盘及主轴强度分析[M]. 北京: 航空工业出版社, 2001. |
General Editorial Board of Aeroengine Design Manual. Aeroengine design manual: Volume 18: Strength analysis of blade disc and spindle[M]. Beijing: Aviation Industry Press, 2001 (in Chinese). |
/
〈 |
|
〉 |