论文

大飞机典型货舱下部结构冲击试验及数值模拟

  • 解江 ,
  • 牟浩蕾 ,
  • 冯振宇 ,
  • 程坤 ,
  • 刘义 ,
  • 刘小川 ,
  • 白春玉 ,
  • 惠旭龙
展开
  • 1. 中国民航大学 科技创新研究院, 天津 300300;
    2. 中国民航大学 安全科学与工程学院, 天津 300300;
    3. 中国飞机强度研究所 结构冲击动力学航空科技重点实验室, 西安 710065

收稿日期: 2021-05-31

  修回日期: 2022-03-14

  网络出版日期: 2022-07-07

基金资助

天津市教委科研计划(2019KJ135);天津市自然科学基金

Impact characteristics of typical sub-cargo structure of large aircraft: Tests and numerical simulation

  • XIE Jiang ,
  • MOU Haolei ,
  • FENG Zhenyu ,
  • CHENG Kun ,
  • LIU Yi ,
  • LIU Xiaochuan ,
  • BAI Chunyu ,
  • XI Xulong
Expand
  • 1. Science and Technology Innovation Research Institute, Civil Aviation University of China, Tianjin 300300, China;
    2. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China;
    3. Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2021-05-31

  Revised date: 2022-03-14

  Online published: 2022-07-07

Supported by

The Scientific Research Project of Tianjin Municipal Education Commission (2019KJ135); Tianjin Nortural Science Foundation

摘要

针对大飞机全尺寸三框两段货舱地板下部结构,分别进行3.95 m/s和5.53 m/s的落重冲击试验,对比分析其变形模式和冲击响应特性。建立货舱地板下部结构有限元模型,通过仿真结果与试验结果的相关性分析来验证有限元模型,并进一步分析不同冲击速度对货舱地板下部结构变形模式和冲击响应特性的影响。结果表明:在3.95 m/s冲击下,中间支撑件与机身框连接区域铆钉未发生失效,在5.53 m/s冲击下,中间支撑件与机身框连接区域铆钉发生失效,且最终压缩位移量增大221.0%,最大加速度峰值降低19.9%,最大冲击力峰值降低2.9%。有限元模型能够很好地复现冲击试验过程,准确模拟机身框、中间支撑件及C型支撑件等变形情况,捕捉到中间支撑件与机身框连接区域的铆钉失效情况,在3.95 m/s和5.53 m/s冲击下,仿真与试验获得的最大加速度峰值偏差分别为4%和11.4%。中间支撑件与机身框连接铆钉在4.0~4.5 m/s的速度区间内发生失效,导致货舱地板下部结构整体压缩量迅速增大,中间支撑件吸能占比下降,机身框吸能占比上升。撞击区域铆钉失效对货舱地板下部结构变形模式、冲击响应和吸能特性有显著影响,研究成果可为运输类飞机机身结构适坠性设计、分析及验证提供支持。

本文引用格式

解江 , 牟浩蕾 , 冯振宇 , 程坤 , 刘义 , 刘小川 , 白春玉 , 惠旭龙 . 大飞机典型货舱下部结构冲击试验及数值模拟[J]. 航空学报, 2022 , 43(6) : 525890 -525890 . DOI: 10.7527/S1000-6893.2021.25890

Abstract

The typical sub-cargo structures of three-frame sectional fuselage are adopted to investigate their impact behaviors. The deformation mode and impact response characteristics are compared and analyzed numerically as well as experimentally at various vertical impact velocities. The finite element model of the structure is built up and validated by drop tests with impact velocity of 3.95 m/s and 5.53 m/s. The influence of different impact velocities on the deformation mode and impact response characteristics is further discussed. The results show that the rivets connecting the middle stanchions and fuselage frames remain sound at 3.95 m/s impact velocity. However, as the impact velocity is increased to 5.53 m/s, failure of those rivets occurs, with the final compression displacement being increased by 221.0%, the peak acceleration being reduced by 19.9%, and the peak impact force being reduced by 2.9%. The finite element model can well capture the dynamic behavior of sub-cargo structures observed in the impact test, and can predict the deformation of fuselage frames, middle stanchions and C-channel stanchions, as well as failure of rivets. The deviation of the maximum acceleration peak obtained by simulation and test is 4% and 11.4% at two drop test cases, respectively. The rivets in the connection areas between the middle stanchions and fuselage frames are found failed in finite element analysis around the impact velocity range of 4-4.5 m/s. Consequently, the failure of those rivets results in a rapid increase in the overall compression of sub-cargo structure and a decrease in the energy absorption ratio of middle stanchions, and the energy absorption fuselage frames is therefore dominant. The failure of rivets in the impact area can significantly affect the deformation mode, impact response and energy-absorbing characteristics of sub-cargo structure. This investigation provides insights and understanding for crashworthiness design, analysis as well as certification of transport category airplanes.

参考文献

[1] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98:106-123.
[2] MOU H L, XIE J, FENG Z Y. Research status and future development of crashworthiness of civil aircraft fuselage structures:an overview[J]. Progress in Aerospace Sciences, 2020, 119:100644.
[3] 牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报, 2020, 20(3):17-39. MOU H L, XIE J, FENG Z Y. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3):17-39(in Chinese).
[4] RICCIO A, SAPUTO S, SELLITTO A, et al. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles[J]. Aerospace, 2019, 6(6):72.
[5] DELETOMBE E, DELSART D. Highly nonlinear and transient structural dynamics:a review about crashworthiness of composite aeronautical structures[J]. Aeroelasticity and Structural dynamics, 2018, 14(11):1-11.
[6] ADAMS A, LANKARANI H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness[J]. International Journal of Crashworthiness, 2003, 8(4):401-413.
[7] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9):2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2130-2140(in Chinese).
[8] TAY Y Y, BHONGE P S, LANKARANI H M. Crash simulations of aircraft fuselage section in water impact and comparison with solid surface impact[J]. International Journal of Crashworthiness, 2015, 20(5):464-482.
[9] 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报, 2010, 31(2):271-276. REN Y R, XIANG J W, LUO Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):271-276(in Chinese).
[10] 郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计[J]. 航空学报, 2012, 33(4):640-649. ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness optimization of civil aircraft subfloor structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):640-649(in Chinese).
[11] 何欢, 陈国平, 张家滨. 带油箱结构的机身框段坠撞仿真分析[J]. 航空学报, 2008, 29(3):627-633. HE H, CHEN G P, ZHANG J B. Crash simulation of fuselage section with fuel tank[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):627-633(in Chinese).
[12] FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane[J]. Journal of Aircraft, 1987, 24(4):274-280.
[13] JACKSON K, FASANELLA E L. Crash simulation of vertical drop tests of two boeing 737 fuselage sections DOT/FAA/AR-02/62[R]. 2002
[14] JACKSON K, LITTELL J, ANNETT M, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections:NASA/TM-2018-219807[R] Washington D.C.:NASA, 2018.
[15] HASHEMI SMR, WALTON AC. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2000, 214(5):265-280.
[16] LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics, 2015, 28(2):447-456.
[17] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[C]//SAE Technical Paper Series. Warrendale:SAE International, 2003:1-12.
[18] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Vertical drop test of a transport fuselage section[C]//SAE Technical Paper Series. Warrendale:SAE International 2002:1-10.
[19] ARNAUDEAU F, MAHE M, DELETOMBE E, et al. Crashworthiness of aircraft composites structures (invited talk)[C]//Proceedings of ASME 2002 International Mechanical Engineering Congress and Exposition, 2008:31-40.
[20] DELSART D, PORTEMONT G, WAIMER M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section[J]. Procedia Structural Integrity, 2016, 2:2198-2205.
[21] JACKSON K E. Analytical crash simulation of three composite fuselage concepts and experimental correlation[J]. Journal of the American Helicopter Society, 1997, 42(2):116-125.
[22] KAREN E J, EDWIN L. Crashworthy evaluation of a 1/5-scale model composite fuselage concept:NASA/TM1999-209132[R]. Washington D.C.:NASA, 1999.
[23] 郑建强, 向锦武, 罗漳平, 等. 民机机身耐撞性设计的波纹板布局[J]. 航空学报, 2010, 31(7):1396-1402. ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness layout of civil aircraft using waved-plate for energy absorption[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1396-1402(in Chinese).
[24] WIGGENRAAD J F M, SANTORO D, LEPAGE F, et al. Development of a crashworthy composite fuselage concept for a commuter aircraft, NLR-TP-2001-108[R]. Washington D.C.:National Aerospace Laboratory, 2001:1-13.
[25] WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft-comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2):193-218.
[26] CAPRIO F D, IGNARRA M, MARULO F, et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, 167:88-96.
[27] 牟浩蕾, 赵一帆, 刘义, 等. 航空沉头铆钉动态加载试验及失效模式研究[J]. 航空科学技术, 2019, 30(4):69-78. MOU H L, ZHAO Y F, LIU Y, et al. Dynamic loading failure experiment and failure mode analysis of aeronautic countersunk rivets[J]. Aeronautical Science & Technology, 2019, 30(4):69-78(in Chinese).
[28] 冯振宇, 李恒晖, 刘义, 等. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12):12088-12093. FENG Z Y, LI H H, LIU Y, et al. Comparison of constitutive and failure models of 7075-T7351 alloy at intermediate and low strain rates[J]. Materials Reports, 2020, 34(12):12088-12093(in Chinese).
[29] 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报, 2019, 40(2):522394. FENG Z Y, XIE J, LI H H, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):522394(in Chinese).
[30] MOU H L, XIE J, LIU Y, et al. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft[J]. Aerospace Science and Technology, 2020, 107:106305.
[31] 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性[J]. 航空学报, 2019, 40(9):222907. FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9):222907(in Chinese).
文章导航

/