论文

飞机新牵引滑出方式下前起落架动响应分析

  • 李跃明 ,
  • 李晓云 ,
  • 柴怡君 ,
  • 杨雄伟
展开
  • 西安交通大学 航天航空学院, 机械结构强度与振动国家重点实验室, 先进飞行器服役环境与控制陕西省重点实验室, 西安 710049

收稿日期: 2022-01-07

  修回日期: 2022-04-01

  网络出版日期: 2022-07-07

基金资助

国家自然科学基金民航联合研究基金重点项目(U2033208)

Dynamic response analysis of nose landing gear in aircraft new towing and taxiing mode

  • LI Yueming ,
  • LI Xiaoyun ,
  • CHAI Yijun ,
  • YANG Xiongwei
Expand
  • State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2022-01-07

  Revised date: 2022-04-01

  Online published: 2022-07-07

Supported by

Key Projects of the Civil Aviation Joint Fund of the National Natural Science Foundation of China (U2033208)

摘要

现行民航飞机离港时,需由牵引车推出泊位后再依靠飞机自身发动机动力进入跑道。为使机场更安全高效运行,人们正在探索一种全新的飞机滑出模式——牵引滑出,其无需发动机动力、即从飞机推出直至跑道端等待起飞均依靠地面的外部动力移动,由飞行员控制牵引车牵引的离港作业方式。其有助于实现高效、绿色、经济的机场运营目标。前起落架作为承载飞机重量和实现地面牵引滑行的关键组件,其动力学特性直接决定着飞机的高速牵引滑行安全,也影响着结构的后续飞行安全及全生命使用周期,故针对新一代牵引滑出方式的飞机前起落架力学行为开展研究十分必要。以某型民航飞机前起落架为研究对象,考虑减震支柱及牵引车轮胎的缓冲性能,研究了承受满载、高速牵引滑行时的前起落架的动特性、动响应行为,并给出了跑道随机不平度激励对前起落架随机响应的影响,获得了不同承载、不同牵引速度下前起落架动力学响应特性。结果表明,在前起落架满载高速牵引滑行中,牵引载荷在阻力臂的变形及振动响应中起主导作用。本文的研究结果可为新型牵引方式下前起落架的设计以及现役飞机的安全运行保障提供重要参考。

本文引用格式

李跃明 , 李晓云 , 柴怡君 , 杨雄伟 . 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报, 2022 , 43(6) : 526915 -526915 . DOI: 10.7527/S1000-6893.2022.26915

Abstract

Nowadays, a civil aviation aircraft needs to be pushed out of the berth by a tractor before leaving the port, and then rely on its own engine power to enter the runway. In order to make the airport operate more safely and efficiently, a new aircraft taxiing mode-towing and taxiing is explored, which does not require engine power. This mode relies on external power for the aircraft to move from launching the berth to the runway waiting for take-off while pilot controls the movement of the tractor, which ultimately, helps the airport to achieve efficient, green and economic operation goals. The nose landing gear is a key component in carrying the weight of the aircraft and realizing ground towing and taxiing, and its dynamic characteristics directly determine the high-speed towing and taxiing safety of the aircraft, which affects the subsequent flight safety and full life cycle of the structure. Therefore, it is necessary to study the mechanical behavior of the nose landing gear under the new generation of towing and taxiing methods. Taking the nose landing gear of a certain type of civil aviation aircraft as the research object, the dynamic characteristics and dynamic response behavior of the nose landing gear under heavy load and high-speed traction are studied. Likewise, the cushioning performance of the shock absorber struts and tractor tires is considered. The influence of the random road irregularity excitation on the response of nose landing gear is studied, and the dynamic response characteristics under different loads and towing speeds are obtained. The results show that the traction load plays a leading role in the vibration of the resistance arm during high-speed taxiing with full load. An important reference for the design of the nose landing gear under the new towing mode and the safe operation guarantee of the current aircraft can be provided.

参考文献

[1] 聂宏, 魏小辉. 飞机起落架动力学设计与分析[M]. 西安:西北工业大学出版社, 2013. NIE H, WEI X H. Dynamic design and analysis of aircraft landing gear[M]. Xi'an:Northwestern Polytechnical University Press, 2013(in Chinese).
[2] 唐瑞琳, 巩磊, 王博. 飞机起落架动力学建模及地面运动仿真[J]. 科学技术与工程, 2021, 21(16):6889-6897. TANG R L, GONG L, WANG B. Landing gear dynamics modeling and aircraft ground motion simulation[J]. Science Technology and Engineering, 2021, 21(16):6889-6897(in Chinese).
[3] KEWLEY S, LOWENBERG M, NEILD S, et al. Investigation into the interaction of nose landing gear and fuselage dynamics[J]. Journal of Aircraft, 2016, 53(4):881-891.
[4] 吴卫国, 孙建桥, 冷永刚, 等. 飞机起落架动力学建模及着陆随机响应分析[J]. 航空学报, 2016, 37(4):1228-1239. WU W G, SUN J Q, LENG Y G, et al. Dynamic modeling of landing gear and its random response analysis[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1228-1239(in Chinese).
[5] ZHANG W, ZHANG Z, ZHU Q D, et al. Dynamics model of carrier-based aircraft landing gears landed on dynamic deck[J]. Chinese Journal of Aeronautics, 2009, 22(4):371-379.
[6] CAPUTO F, DE LUCA A, GRECO A, et al. Investigation on the static and dynamic structural behaviors of a regional aircraft main landing gear by a new numerical methodology[J]. Frattura Ed Integrità Strutturale, 2017, 12(43):191-204.
[7] HAMEED A, ZUBAIR O, SHAMS T A, et al. Failure analysis of a broken support strut of an aircraft landing gear[J]. Engineering Failure Analysis, 2020, 117:104847.
[8] WANG H T, CHEN X. The malfunction and analysis during the overhaul of the landing gear[C]//Proceedings of the First Symposium on Aviation Maintenance and Management-Volume I, 2014.
[9] FREITAS M, INFANTE V, BAPTISTA R. Failure analysis of the nose landing gear axle of an aircraft[J]. Engineering Failure Analysis, 2019, 101:113-120.
[10] CHEN S W, LIU H, LI F H. Analysis of Boeing 737 aircraft towing accidents[J]. Engineering Failure Analysis, 2017, 80:234-240.
[11] SONOWAL P, PANDEY K M, SHARMA K K. Design and static analysis of landing gear shock absorber of commercial aircraft[J]. Materials Today:Proceedings, 2021, 45:6712-6717.
[12] IMRAN M, AHMED R M S, HANEEF M. FE analysis for landing gear of test air craft[J]. Materials Today:Proceedings, 2015, 2(4-5):2170-2178.
[13] MUSTASHIN M S, RAHMANI M, BEHDINAN K. Experimental characterization of a novel nose landing gear shimmy damper using a small-scale test rig[J]. Aerospace Science and Technology, 2021, 112:106625.
[14] 王鑫涛, 杜星. 飞机结构强度试验应急载荷限定系统[J]. 航空学报, 2020, 41(2):223332. WANG X T, DU X. Emergency load limited system for aircraft structural strength test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):223332(in Chinese).
[15] 王彬文, 董登科, 陈莉, 等. 大型水陆两栖飞机起落架强度试验技术[J]. 西安交通大学学报, 2020, 54(7):9-16, 157. WANG B W, DONG D K, CHEN L, et al. Strength test technique for large amphibious aircraft landing gear[J]. Journal of Xi'an Jiaotong University, 2020, 54(7):9-16, 157(in Chinese).
[16] 贾玉红, 夏涛, 宋锐. 管簧式起落架落震试验及分析[J]. 振动与冲击, 2017, 36(8):218-223. JIA Y H, XIA T, SONG R. Drop test and analysis of the landing gear of the tube spring[J]. Journal of Vibration and Shock, 2017, 36(8):218-223(in Chinese).
[17] 陈舒文, 刘晖, 李福海, 等. 含接触碰撞的飞机地面牵引载荷分析[J]. 哈尔滨工程大学学报, 2017, 38(11):1794-1799. CHEN S W, LIU H, LI F H, et al. Research on aircraft towing load with contact-impact effects[J]. Journal of Harbin Engineering University, 2017, 38(11):1794-1799(in Chinese).
[18] HUANG M Y, NIE H, ZHANG M. Analysis of ground handling characteristic of aircraft with electric taxi system[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2019, 233(6):1546-1561.
[19] 解本铭, 朱俊伟, 王伟, 等. 飞机无杆牵引车多工况牵引的平顺性仿真及优化[J]. 机械设计与制造, 2020(10):1-5. XIE B M, ZHU J W, WANG W, et al. Simulation and optimization of ride comfort on multi-working for aircraft rodless tractor[J]. Machinery Design & Manufacture, 2020(10):1-5(in Chinese).
[20] MU M X, LIU H, CHEN D W. Analysis of effects on the load of nose landing gear by towbarless traction[C]//2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT). Piscataway:IEEE Press, 2020:762-768.
[21] 沈圳, 刘晖, 母梦新. 飞机无杆牵引安全技术研究[J]. 南京航空航天大学学报, 2019, 51(6):819-827. SHEN Z, LIU H, MU M X. Aircraft towbarless traction safety technology[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(6):819-827(in Chinese).
[22] 朱贺, 李静菲. 无杆飞机牵引车转弯牵引工况下的制动稳定性分析[J]. 机械设计, 2020, 37(S1):72-76. ZHU H, LI J F. Analysis on braking stability of towbarless towing vehicle under steering and braking[J]. Journal of Machine Design, 2020, 37(Sup 1):72-76(in Chinese).
[23] Boeing.Boeing commercial airplane group customer service and material support (CSMS)[R]. Seattle:Boeing.
[24] 姜成杰, 许锋. 大型水陆两栖飞机起落架疲劳寿命分析与优化[J]. 机械设计与制造工程, 2015, 44(1):22-28. JIANG C J, XU F. The fatigue life analysis and optimization of landing gear for a large amphibian aircraft[J]. Machine Design and Manufacturing Engineering, 2015, 44(1):22-28(in Chinese).
[25] 金睿臣, 宋健. 路面不平度的模拟与汽车非线性随机振动的研究[J]. 清华大学学报(自然科学版), 1999, 39(8):76-79. JIN R C, SONG J. Simulation of the road irregularity and study of nonlinear random vibration of the automobile[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(8):76-79(in Chinese).
[26] 王汉平, 张哲, 李倩. 路面时域模拟的谐波叠加组分中相位角的相干性研究[J]. 北京理工大学学报, 2019, 39(10):1034-1038. WANG H P, ZHANG Z, LI Q. Coherence of phase angle of harmonic superposition components in time domain simulation of road roughness for right and left wheel tracks[J]. Transactions of Beijing Institute of Technology, 2019, 39(10):1034-1038(in Chinese).
[27] COETZEE E, KRAUSKOPF B, LOWENBERG M. Analysis of medium-speed runway exit maneuvers[C]//AIAA Modeling and Simulation Technologies Conference. Reston:AIAA, 2010:7616.
文章导航

/