电子电气工程与控制

变体飞行器控制技术发展现状与展望

  • 冉茂鹏 ,
  • 王成才 ,
  • 刘华华 ,
  • 王薇 ,
  • 吕金虎
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
    2. 中国电子科学研究院, 北京 100041

收稿日期: 2022-05-16

  修回日期: 2022-05-22

  网络出版日期: 2022-06-27

基金资助

国家自然科学基金(61873295,61833016);北京航空航天大学青年拔尖人才支持计划(YWF-22-L-1205)

Research status and future development of morphing aircraft control technology

  • RAN Maopeng ,
  • WANG Chengcai ,
  • LIU Huahua ,
  • WANG Wei ,
  • LYU Jinhu
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
    2. China Academy of Electronics and Information Technology, Beijing 100041, China

Received date: 2022-05-16

  Revised date: 2022-05-22

  Online published: 2022-06-27

Supported by

National Natural Sciente Foundation of China(61873295, 61833016); Beihang Young Top Talents Support Plan(YWF-22-L-1205)

摘要

变体飞行器可利用变形结构改变气动外形以适应复杂的环境和任务需求,在军事和民用领域均具有极高的发展潜力和应用价值。围绕变体飞行器控制技术这一难度高、发展快、应用前景广阔的研究方向,综述了变体飞行器控制技术的主要研究成果和国内外最新研究进展。首先,结合变体飞行器的发展历程,介绍了变体飞行器的研究背景与意义,指出开展变体飞行器控制技术研究的重要性。其次,对变形决策技术、控制系统建模技术和姿态控制技术等研究成果进行总结与分析。最后,对变体飞行器控制技术的未来研究方向进行了展望。

本文引用格式

冉茂鹏 , 王成才 , 刘华华 , 王薇 , 吕金虎 . 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022 , 43(10) : 527449 -527449 . DOI: 10.7527/S1000-6893.2022.27449

Abstract

Morphing aircraft can adapt to the complex environment and mission requirements by changing the aerodynamic shape of the deformed structure. It has high development potential and application value in military and civil fields. In this paper, the main research achievements and the latest research progress of the control technology of morphing aircraft are reviewed. Firstly, the background and significance of morphing aircraft control technology are briefly introduced. Secondly, the research results of deformation decision technology, control system modeling and attitude control technology are summarized and analyzed. Finally, the important research directions in the control technology of morphing aircraft are also discussed.

参考文献

[1] AJAJ R M, JANKEE G K. The transformer aircraft:A multimission unmanned aerial vehicle capable of symmetric and asymmetric span morphing[J]. Aerospace Science and Technology, 2018, 76:512-522.
[2] AFONSO F, VALE J, LAU F, SULEMAN A. Performance based multidisciplinary design optimization of morphing aircraft[J]. Aerospace Science and Technology, 2017, 67:1-12.
[3] MICHAUD F, DALIR H, JONCAS S. Structural design and optimization of an aircraft morphing wing:Composite skin[J]. Journal of Aircraft, 2017, 55(1):195-211.
[4] AJAJ R M, BEAVERSTOCK C S, FRISWELL M I. Morphing aircraft:The need for a new design philosophy[J]. Aerospace Science and Technology, 2016, 49:154-166.
[5] 梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报, 2020, 41(S2):724274. LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):724274 (in Chinese).
[6] 尹维龙, 石庆华. 变体飞行器蒙皮材料与结构研究综述[J]. 航空制造技术, 2017, 60(17):24-29. YIN W L, SHI Q H. Review of material and structure for morphing aircraft skin[J]. Aeronautical Manufacturing Technology, 2017, 60(17):24-29 (in Chinese).
[7] 龚春林, 赤丰华, 谷良贤, 等. 基于Karhunen-Loève展开的分布式变体飞行器最优控制方法[J]. 航空学报, 2018, 39(2):121518. GONG C L, CHI F H, GU L X, et al. Optimal control method for distributed morphing aircraft based on Karhunen-Loève expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121518 (in Chinese).
[8] CHEN Y C, SHEN X, LI J F, et al. Nonlinear hysteresis identification and compensation based on the discrete Preisach model of an aircraft morphing wing device manipulated by an SMA actuator[J]. Chinese Journal of Aeronautics, 2019, 32(4):1040-1050.
[9] 程昊宇, 董朝阳, 王青, 等. 变体飞行器的非脆弱有限时间鲁棒控制器设计[J]. 控制与决策, 2017, 32(11):1933-1940. CHENG H Y, DONG C Y, WANG Q, et al. Non-fragile finite-time robust controller design for morphing aircraft[J]. Control and Decision, 2017, 32(11):1933-1940 (in Chinese).
[10] BAO C Y, WANG P, TANG G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5):535-553.
[11] 张尧, 张婉, 别大卫, 等. 智能变体飞行器研究综述与发展趋势分析[J]. 飞航导弹, 2021(6):14-23. ZHANG Y, ZHANG W, BIE D W, et al. Research summary and development trend analysis of intelligent variable aircraft[J]. Aerodynamic Missile Journal, 2021(6):14-23 (in Chinese).
[12] KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407):1089-1094.
[13] RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3):eaal2505.
[14] DANIEL T G. A linear input-varying framework for modeling and control of morphing aircraft[D]. Gainesville:University of Florida,2011.
[15] AJANIC E, FEROSKHAN M, MINTCHEV S, et al. Bioinspired wing and tail morphing extends drone flight capabilities[J]. Science Robotics, 2020, 5(47):eabc2897.
[16] CHANG E, MATLOFF L Y, STOWERS A K, et al. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion[J]. Science Robotics, 2020, 5(38):eaay1246.
[17] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9):823-877.
[18] LI D C, ZHAO S W, DA RONCH A, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100:46-62.
[19] CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft:A review[J]. Chinese Journal of Aeronautics, 2022, 35(5):220-246.
[20] SEIGLER T M. Dynamics and control of morphing aircraft[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2005:51-72.
[21] 王青, 刘华华. 变体飞行器智能自主决策与控制[J]. 现代防御技术, 2020, 48(6):5-11. WANG Q, LIU H H. Intelligent autonomous decision-making and control of morphing aircraft[J]. Modern Defence Technology, 2020, 48(6):5-11 (in Chinese).
[22] SHI R Q, WAN W Y. Analysis of flight dynamics for large-scale morphing aircraft[J]. Aircraft Engineering and Aerospace Technology, 2015, 87(1):38-44.
[23] ABDULRAHIM M, LIND R. Control and simulation of a multi-role morphing micro air vehicle:AIAA-2005-6481[R]. Reston:AIAA, 2005.
[24] CHEN X Y, LI C N, GONG C L, et al. A study of morphing aircraft on morphing rules along trajectory[J]. Chinese Journal of Aeronautics, 2021, 34(7):232-243.
[25] LECUN Y, BENGIO Y, HINTON G. Deep learning[J].Nature, 2015, 521(7553):436-444.
[26] LITTMAN M L. Reinforcement learning improves behaviour from evaluative feedback[J]. Nature, 2015, 521(7553):445-451.
[27] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
[28] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2019-07-05)[2022-04-18]. https://arxiv.org/abs/1509.02971.
[29] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-08-28)[2022-04-18]. https://arxiv.org/abs/1707.06347.
[30] VALASEK J, TANDALE M D, RONG J. A reinforcement learning-adaptive control architecture for morphing[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(4):174-195.
[31] 闫斌斌, 李勇, 戴沛, 等. 基于增强学习的变体飞行器自适应变体策略与飞行控制方法研究[J]. 西北工业大学学报, 2019, 37(4):656-663. YAN B B, LI Y, DAI P, et al. Adaptive wing morphing strategy and flight control method of a morphing aircraft based on reinforcement learning[J]. Journal of Northwestern Polytechnical University, 2019, 37(4):656-663 (in Chinese).
[32] 温暖, 刘正华, 祝令谱, 等. 深度强化学习在变体飞行器自主外形优化中的应用[J]. 宇航学报, 2017, 38(11):1153-1159. WEN N, LIU Z H, ZHU L P, et al. Deep reinforcement learning and its application on autonomous shape optimization for morphing aircrafts[J]. Journal of Astronautics, 2017, 38(11):1153-1159 (in Chinese).
[33] 桑晨, 郭杰, 唐胜景, 等. 基于DDPG算法的变体飞行器自主变形决策[J]. 北京航空航天大学学报, 2022, 48(5):910-919. SANG C, GUO J, TANG S J, et al. Autonomous deformation decision making of morphing aircraft based on DDPG algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5):910-919 (in Chinese).
[34] LI R Z, WANG Q, LIU Y A, et al. Morphing strategy design for UAV based on prioritized sweeping reinforcement learning[C]//IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2020:2786-2791.
[35] XIA W B, WANG W H, ZHANG W. The optimal sweep angle design of a morphing firebee drone in a cruise mission[C]//2021 33rd Chinese Control and Decision Conference (CCDC). Piscataway:IEEE Press, 2021:5472-5477.
[36] LAMPTON A, NIKSCH A, VALASEK J. Reinforcement learning of morphing airfoils with aerodynamic and structural effects[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(1):30-50.
[37] LAMPTON A, NIKSCH A, VALASEK J. Reinforcement learning of a morphing airfoil-policy and discrete learning analysis:AIAA-2008-7281[R]. Reston:AIAA, 2008.
[38] VALASEK J, DOEBBLER J, TANDALE M D, et al. Improved adaptive-reinforcement learning control for morphing unmanned air vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38(4):1014-1020.
[39] 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3):426-443. BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3):426-443 (in Chinese).
[40] NIKSCH A, VALASEK J, STRGANAC T, et al. Six degree-of-freedom dynamical model of a morphing aircraft:AIAA-2009-5849[R]. Reston:AIAA, 2009.
[41] OBRADOVIC B, SUBBARAO K. Modeling of dynamic loading of morphing-wing aircraft[J]. Journal of Aircraft, 2011, 48(2):424-435.
[42] 乐挺, 王立新, 艾俊强. Z型翼变体飞机的纵向多体动力学特性[J]. 航空学报, 2010, 31(4):679-686. YUE T, WANG L X, AI J Q. Longitudinal multibody dynamic characteristics of Z-wing morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4):679-686 (in Chinese).
[43] 何真, 陆宇平, 郑曼曼. 变体无人机栖息机动的仿真与分析[C]//第三十三届中国控制会议论文集(E卷). 北京:中国自动化学会, 2014:109-114. HE Z,LU Y P,ZHENG M M.Simulation and analysis of perching manevers for morphing UAVS[C]//Proceedings of 33rd Chinese Control Conference. Beijing:Chinese Association of Automation, 2014:109-114 (in Chinese).
[44] 郭建国, 陈惠娟, 周军, 等. 非对称伸缩翼飞行器动力学建模及特性分析[J]. 系统工程与电子技术, 2016, 38(8):1951-1957. GUO J G, CHEN H J, ZHOU J, et al. Dynamics modeling and characteristic analysis for vehicle with asymmetric span morphing wing[J]. Systems Engineering and Electronics, 2016, 38(8):1951-1957 (in Chinese).
[45] DAI P, YAN B B, LIU R F, et al. Modeling and nonlinear model predictive control of a variable-sweep-wing morphing waverider[J]. IEEE Access, 2021,9:63510-63520.
[46] GRAUER J A, HUBBARD J E. Multibody model of an ornithopter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1675-1679.
[47] SHI R Q, SONG J M. Modeling and control for an in-plane morphing wing[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation. Piscataway:IEEE Press, 2012:1430-1435.
[48] 蒋国江. 扑翼变形飞行器的动力学建模与飞行仿真[D]. 长沙:国防科技大学, 2015. JIANG G J. Dynamic modeling and flight simulation of flapping wing aerocraft[D]. Changsha:National University of Defense Technology, 2015 (in Chinese).
[49] WANG X M, ZHOU W Y, MU R N, et al. Modeling and simulation of mass-actuated flexible aircraft for roll control[J]. Aerospace Science and Technology, 2020, 107:106254.
[50] 童磊. 不对称变后掠翼飞行器多刚体建模与飞行控制[D]. 合肥:中国科学技术大学, 2013. TONG L. Multi-body dynamic modelling and flight control for asymmetric variable sweep airerafts[D]. Hefei:University of Science and Technology of China, 2013 (in Chinese).
[51] 张杰, 吴森堂. 一种变体飞行器的动力学建模与动态特性分析[J]. 北京航空航天大学学报, 2015, 41(1):58-64. ZHANG J, WU S T. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1):58-64 (in Chinese).
[52] GAO L, JIN H Z, ZHAO J, et al. Flight dynamics modeling and control of a novel catapult launched tandem-wing micro aerial vehicle with variable sweep[J]. IEEE Access, 2018, 6:42294-42308.
[53] MA H, SONG B F, PEI Y, et al. Efficiency change of control surface of a biomimetic wing morphing UAV[J]. IEEE Access, 2020,8:45627-45640.
[54] SVOBODA F, HROMČÍK M, HENGSTER-MOVRIC K. Distributed state feedback control for aeroelastic morphing wing flutter supression[C]//2018 26th Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2018:575-580.
[55] MORAVEJ BARZANI S H, SHAHVERDI H, AMOOZGAR M. Parametric study on the dynamic aeroelastic analysis of a two-stage axially deploying telescopic wing[J]. Journal of Vibration and Control, 2022:107754632210741.
[56] MENON A N, CHAKRAVARTHY A, GRUENWALD B C, et al. Modeling and control of uncertain hybrid structure flexible, morphing wings with stability and performance guarantees:AIAA-2020-1078[R]. Reston:AIAA, 2020.
[57] 郭东, 徐敏, 陈士橹. 弹性飞行器飞行动力学建模研究[J]. 空气动力学学报, 2013, 31(4):413-419, 436. GUO D, XU M, CHEN S L. Research on flight dynamic modeling of highly flexible aircrafts[J]. Acta Aerodynamica Sinica, 2013, 31(4):413-419, 436 (in Chinese).
[58] 沈华勋. 大柔性飞行器结构与飞行动力学建模及未建模分析[D]. 南京:南京航空航天大学, 2016. SHEN H X. Structural, flight dynamic modeling andun-modeled analysis of very flexible aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
[59] 顾鑫. 柔性折叠翼飞行器飞行动力学问题研究[D]. 南京:南京航空航天大学, 2012. GU X. Flight dynamic studies of a flexible folding wing aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
[60] HUANG R, YU X H, ZHOU X H. Efficient nonlinear aeroservoelastic modeling for morphing wing with bilinear stiffness[J]. AIAA Journal, 2021, 60(5):3135-3146.
[61] 胡巍. 变体飞行器动力学建模及气动弹性特性研究[D]. 西安:西北工业大学, 2017. HU W. Research on dynamic modeling and aeroelastic characteristics of variant aircraft[D]. Xi'an:Northwestern Polytechnical University, 2017 (in Chinese).
[62] 杨雷, 曲广吉. 航天器柔性多体系统动力学的高效建模方法[J]. 航天器工程, 1997, 6(3):13-18. YANG L, QU G J. Dynamic model of flexible multibody system with topological tree configuration[J]. Spacecraft Engineering, 1997, 6(3):13-18 (in Chinese).
[63] GADIENT R, LAVRETSKY E, WISE K. Very flexible aircraft control challenge problem:AIAA-2012-4973[R]. Reston:AIAA, 2012.
[64] KIM J K, HAN J H. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta[J]. Bioinspiration & Biomimetics, 2014, 9(1):016011.
[65] 于扬, 王正杰. 柔性翼飞行器动力学建模与循环求解仿真方法[J]. 北京理工大学学报, 2017, 37(12):1224-1228. YU Y, WANG Z J. Modelling and simulation method for flexible wing aircraft[J]. Transactions of Beijing Institute of Technology, 2017, 37(12):1224-1228 (in Chinese).
[66] MEIROVITCH L, STEMPLE T. Hybrid equations of motion for flexible multibody systems using quasicoordinates[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4):678-688.
[67] SHI R Q, SONG J M. Modeling and control for an in-plane morphing wing[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation. Piscataway:IEEE Press, 2012:1430-1435.
[68] SHI R Q, SONG J M. Dynamics and control for an in-plane morphing wing[J]. Aircraft Engineering and Aerospace Technology, 2013, 85(1):24-31.
[69] OKTAY T, COBAN S. Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs[J]. Elektronika Ir Elektrotechnika, 2017, 23(5):15-20.
[70] NEAL D, AKLE B, HESSE T. Optimal flight control of an adaptive aircraft wing modeled by NeuroFuzzy techniques[C]//Proceedings of the 2003 IEEE International Symposium on Intelligent Control. Piscataway:IEEE Press, 2003:364-370.
[71] SVOBODA F, HROMČÍK M, HENGSTER-MOVRIC K. Distributed state feedback control for aeroelastic morphing wing flutter supression[C]//2018 26th Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2018:575-580.
[72] ABBASI S H, MAHMOOD A. Modeling, simulation and control of a bio-inspired electromechanical feather for gust mitigation in flapping wing UAV[C]//2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE). Piscataway:IEEE Press, 2019:195-200.
[73] 王青, 王通, 董朝阳, 等. 变体飞行器链式平滑切换控制[J]. 控制理论与应用, 2015, 32(7):949-954. WANG Q, WANG T, DONG C Y, et al. Chained smooth switching control for morphing aircraft[J]. Control Theory & Applications, 2015, 32(7):949-954 (in Chinese).
[74] 江未来, 董朝阳, 王通, 等. 变体飞行器连续平滑切换LPV控制[J]. 系统工程与电子技术, 2015, 37(6):1347-1353. JIANG W L, DONG C Y, WANG T, et al. Continuous smooth switching LPV control for morphing aircraft[J]. Systems Engineering and Electronics, 2015, 37(6):1347-1353 (in Chinese).
[75] 江未来, 董朝阳, 王通, 等. 变体飞行器平滑切换LPV鲁棒控制[J]. 控制与决策, 2016, 31(1):66-72. JIANG W L, DONG C Y, WANG T, et al. Smooth switching LPV robust control for morphing aircraft[J]. Control and Decision, 2016, 31(1):66-72 (in Chinese).
[76] JIANG W L, DONG C Y, WANG Q. A systematic method of smooth switching LPV controllers design for a morphing aircraft[J]. Chinese Journal of Aeronautics, 2015, 28(6):1640-1649.
[77] YUE T, WANG L X, AI J Q. Gain self-scheduled H control for morphing aircraft in the wing transition process based on an LPV model[J]. Chinese Journal of Aeronautics, 2013, 26(4):909-917.
[78] DONG C Y, LI W, WANG Q. H control of switched systems with nonideal switchings and its application to morphing aircraft[J]. Procedia Engineering, 2013, 67:100-109.
[79] 殷明, 陆宇平, 何真. 变体飞行器LPV建模与鲁棒增益调度控制[J]. 南京航空航天大学学报, 2013, 45(2):202-208. YIN M, LU Y P, HE Z. LPV modeling and robust gain scheduling control of morphing aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(2):202-208 (in Chinese).
[80] SHAO P Y, ZHOU Z, MA S H, et al. Structural robust gain-scheduled PID control and application on a morphing wing UAV[C]//2017 36th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2017:3236-3241.
[81] SHAO P Y, WU J, WU C F, et al. Model and robust gain-scheduled PID control of a bio-inspired morphing UAV based on LPV method[J]. Asian Journal of Control, 2019, 21(4):1681-1705.
[82] 梁小辉, 王青, 董朝阳. 基于切换系统的变体飞行器鲁棒自适应控制[J]. 北京航空航天大学学报, 2019, 45(3):538-545. LIANG X H, WANG Q, DONG C Y. Robust adaptive control for morphing aircraft based on switching system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3):538-545 (in Chinese).
[83] 王青, 杨汇川, 董朝阳. 基于重叠参数区域的变体飞行器切换LPV控制[J]. 沈阳工业大学学报, 2013, 35(6):698-703. WANG Q, YANG H C, DONG C Y. Switching LPV control of morphing aircraft based on overlapped parameter area[J]. Journal of Shenyang University of Technology, 2013, 35(6):698-703 (in Chinese).
[84] WEN N, LIU Z H, SUN Y, et al. Design of LPV-based sliding mode controller with finite time convergence for a morphing aircraft[J]. International Journal of Aerospace Engineering, 2017, 2017:8426348.
[85] WEN N, LIU Z H, ZHU L P. Linear-parameter-varying-based adaptive sliding mode control with bounded L2 gain performance for a morphing aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(5):1847-1864.
[86] WU Q, LIU Z H, LIU F N, et al. LPV-based self-adaption integral sliding mode controller with-gain performance for a morphing aircraft[J]. IEEE Access, 7:81515-81531.
[87] YU X Z, HE Z. Filter-based sliding model control for distributed morphing wing structures[C]//2016 35th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2016:1067-1072.
[88] YUE T, ZHANG X Y, WANG L X, et al. Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing[J]. Aerospace Science and Technology, 2017, 70:328-338.
[89] LIU J H, SHAN J Y, HU Y S, et al. Optimal switching control for morphing aircraft with aerodynamic uncertainty[C]//2020 IEEE 16th International Conference on Control & Automation. Piscataway:IEEE Press, 2020:1167-1172.
[90] GONG L G, WANG Q, DONG C Y. Disturbance rejection control of morphing aircraft based on switched nonlinear systems[J]. Nonlinear Dynamics, 2019, 96(2):975-995.
[91] WU K J, ZHANG P X, WU H. A new control design for a morphing UAV based on disturbance observer and command filtered backstepping techniques[J]. Science China Technological Sciences, 2019, 62(10):1845-1853.
[92] WU Z H, LU J C, RAJPUT J, et al. Adaptive neural control based on high order integral chained differentiator for morphing aircraft[J]. Mathematical Problems in Engineering, 2015, 2015:787931.
[93] WU Z H, LU J C, ZHOU Q, et al. Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints[J]. Nonlinear Dynamics, 2017, 87(4):2367-2383.
[94] WU Z H, LU J C, SHI J P, et al. Robust adaptive neural control of morphing aircraft with prescribed performance[J]. Mathematical Problems in Engineering, 2017, 2017:1401427.
[95] QIAO F X, SHI J P, QU X B, et al. Adaptive back-stepping neural control for an embedded and tiltable V-tail morphing aircraft[J]. International Journal of Control, Automation and Systems, 2022, 20(2):678-690.
[96] GONG L G, WANG Q, DONG C Y, et al. Prescribed performance control of morphing aircraft based on switched nonlinear systems and reinforcement learning[J]. Measurement and Control, 2019, 52(5-6):608-624.
[97] GONG L G, WANG Q, HU C H, et al. Switching control of morphing aircraft based on Q-learning[J]. Chinese Journal of Aeronautics, 2020, 33(2):672-687.
[98] LEE H N, KIM S H, KIM Y. Policy gradient-based integral reinforcement learning for optimal control design of nonaffine morphing aircraft systems[C]//2020 28th Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2020:218-223.
[99] KIM S H, LEE H N, KIM Y. Continuous-time deterministic policy gradient-based controller for morphing aircraft without exploration[C]//2020 28th Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2020:224-229.
[100] 李广文, 贾秋玲, 章卫国, 等. 一种飞机大包线控制律增益调参方法[J]. 飞行力学, 2010, 28(1):29-31, 35. LI G W, JIA Q L, ZHANG W G, et al. Gain scheduling method of aircraft control law in the large flight envelope[J]. Flight Dynamics, 2010, 28(1):29-31, 35 (in Chinese).
[101] RAN M P, LI J C, XIE L H. A new extended state observer for uncertain nonlinear systems[J]. Automatica, 2021, 131:109772.
[102] RAN M P, WANG Q, DONG C Y, et al. Active disturbance rejection control for uncertain time-delay nonlinear systems[J]. Automatica, 2020, 112:108692.
[103] RAN M P, WANG Q, DONG C Y. Active disturbance rejection control for uncertain nonaffine-in-control nonlinear systems[J]. IEEE Transactions on Automatic Control, 2017, 62(11):5830-5836.
[104] RAN M P, XIE L H. Adaptive observation-based efficient reinforcement learning for uncertain systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021:3070852.
[105] LEE J, KIM Y. Neural network-based nonlinear dynamic inversion control of variable-span morphing aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2020, 234(10):1624-1637.
[106] 李墨吟, 马泽远, 周建平, 等. 基于神经网络的变后掠翼飞行器自适应控制方法研究[J]. 弹箭与制导学报, 2021, 41(5):73-77, 85. LI M Y, MA Z Y, ZHOU J P, et al. Research on adaptive control method of variable-sweep wing aircraft based on neural network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(5):73-77, 85 (in Chinese).
[107] 路遥, 董朝阳, 王青, 等. 存在整数约束的分布式驱动变体飞行器控制分配[J]. 控制理论与应用, 2018, 35(8):1083-1091. LU Y, DONG C Y, WANG Q, et al. Control allocation for distributed driving morphing aircraft with integer constraints[J]. Control Theory & Applications, 2018, 35(8):1083-1091 (in Chinese).
[108] 江未来, 董朝阳, 王通, 等. 基于控制分配的一类变体飞行器容错控制[J]. 北京航空航天大学学报, 2014, 40(3):355-359. JIANG W L, DONG C Y, WANG T, et al. Fault tolerant control based on control allocation for morphing aircraft model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(3):355-359 (in Chinese).
[109] 董朝阳, 路遥, 江未来, 等. 基于布谷鸟搜索算法的一类变体飞行器容错控制[J]. 航空学报, 2015, 36(6):2047-2054. DONG C Y, LU Y, JIANG W L, et al. Fault tolerant control based on cuckoo search algorithm for a class of morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2047-2054 (in Chinese).
[110] LIANG X H, WANG Q, XU B, et al. Back-stepping fault-tolerant control for morphing aircraft based on fixed-time observer[J]. International Journal of Control, Automation and Systems, 2021, 19(12):3924-3936.
文章导航

/