[1] AJAJ R M, JANKEE G K. The transformer aircraft:A multimission unmanned aerial vehicle capable of symmetric and asymmetric span morphing[J]. Aerospace Science and Technology, 2018, 76:512-522.
[2] AFONSO F, VALE J, LAU F, SULEMAN A. Performance based multidisciplinary design optimization of morphing aircraft[J]. Aerospace Science and Technology, 2017, 67:1-12.
[3] MICHAUD F, DALIR H, JONCAS S. Structural design and optimization of an aircraft morphing wing:Composite skin[J]. Journal of Aircraft, 2017, 55(1):195-211.
[4] AJAJ R M, BEAVERSTOCK C S, FRISWELL M I. Morphing aircraft:The need for a new design philosophy[J]. Aerospace Science and Technology, 2016, 49:154-166.
[5] 梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报, 2020, 41(S2):724274. LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):724274 (in Chinese).
[6] 尹维龙, 石庆华. 变体飞行器蒙皮材料与结构研究综述[J]. 航空制造技术, 2017, 60(17):24-29. YIN W L, SHI Q H. Review of material and structure for morphing aircraft skin[J]. Aeronautical Manufacturing Technology, 2017, 60(17):24-29 (in Chinese).
[7] 龚春林, 赤丰华, 谷良贤, 等. 基于Karhunen-Loève展开的分布式变体飞行器最优控制方法[J]. 航空学报, 2018, 39(2):121518. GONG C L, CHI F H, GU L X, et al. Optimal control method for distributed morphing aircraft based on Karhunen-Loève expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121518 (in Chinese).
[8] CHEN Y C, SHEN X, LI J F, et al. Nonlinear hysteresis identification and compensation based on the discrete Preisach model of an aircraft morphing wing device manipulated by an SMA actuator[J]. Chinese Journal of Aeronautics, 2019, 32(4):1040-1050.
[9] 程昊宇, 董朝阳, 王青, 等. 变体飞行器的非脆弱有限时间鲁棒控制器设计[J]. 控制与决策, 2017, 32(11):1933-1940. CHENG H Y, DONG C Y, WANG Q, et al. Non-fragile finite-time robust controller design for morphing aircraft[J]. Control and Decision, 2017, 32(11):1933-1940 (in Chinese).
[10] BAO C Y, WANG P, TANG G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5):535-553.
[11] 张尧, 张婉, 别大卫, 等. 智能变体飞行器研究综述与发展趋势分析[J]. 飞航导弹, 2021(6):14-23. ZHANG Y, ZHANG W, BIE D W, et al. Research summary and development trend analysis of intelligent variable aircraft[J]. Aerodynamic Missile Journal, 2021(6):14-23 (in Chinese).
[12] KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407):1089-1094.
[13] RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3):eaal2505.
[14] DANIEL T G. A linear input-varying framework for modeling and control of morphing aircraft[D]. Gainesville:University of Florida,2011.
[15] AJANIC E, FEROSKHAN M, MINTCHEV S, et al. Bioinspired wing and tail morphing extends drone flight capabilities[J]. Science Robotics, 2020, 5(47):eabc2897.
[16] CHANG E, MATLOFF L Y, STOWERS A K, et al. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion[J]. Science Robotics, 2020, 5(38):eaay1246.
[17] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9):823-877.
[18] LI D C, ZHAO S W, DA RONCH A, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100:46-62.
[19] CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft:A review[J]. Chinese Journal of Aeronautics, 2022, 35(5):220-246.
[20] SEIGLER T M. Dynamics and control of morphing aircraft[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2005:51-72.
[21] 王青, 刘华华. 变体飞行器智能自主决策与控制[J]. 现代防御技术, 2020, 48(6):5-11. WANG Q, LIU H H. Intelligent autonomous decision-making and control of morphing aircraft[J]. Modern Defence Technology, 2020, 48(6):5-11 (in Chinese).
[22] SHI R Q, WAN W Y. Analysis of flight dynamics for large-scale morphing aircraft[J]. Aircraft Engineering and Aerospace Technology, 2015, 87(1):38-44.
[23] ABDULRAHIM M, LIND R. Control and simulation of a multi-role morphing micro air vehicle:AIAA-2005-6481[R]. Reston:AIAA, 2005.
[24] CHEN X Y, LI C N, GONG C L, et al. A study of morphing aircraft on morphing rules along trajectory[J]. Chinese Journal of Aeronautics, 2021, 34(7):232-243.
[25] LECUN Y, BENGIO Y, HINTON G. Deep learning[J].Nature, 2015, 521(7553):436-444.
[26] LITTMAN M L. Reinforcement learning improves behaviour from evaluative feedback[J]. Nature, 2015, 521(7553):445-451.
[27] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540):529-533.
[28] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2019-07-05)[2022-04-18]. https://arxiv.org/abs/1509.02971.
[29] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017-08-28)[2022-04-18]. https://arxiv.org/abs/1707.06347.
[30] VALASEK J, TANDALE M D, RONG J. A reinforcement learning-adaptive control architecture for morphing[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2(4):174-195.
[31] 闫斌斌, 李勇, 戴沛, 等. 基于增强学习的变体飞行器自适应变体策略与飞行控制方法研究[J]. 西北工业大学学报, 2019, 37(4):656-663. YAN B B, LI Y, DAI P, et al. Adaptive wing morphing strategy and flight control method of a morphing aircraft based on reinforcement learning[J]. Journal of Northwestern Polytechnical University, 2019, 37(4):656-663 (in Chinese).
[32] 温暖, 刘正华, 祝令谱, 等. 深度强化学习在变体飞行器自主外形优化中的应用[J]. 宇航学报, 2017, 38(11):1153-1159. WEN N, LIU Z H, ZHU L P, et al. Deep reinforcement learning and its application on autonomous shape optimization for morphing aircrafts[J]. Journal of Astronautics, 2017, 38(11):1153-1159 (in Chinese).
[33] 桑晨, 郭杰, 唐胜景, 等. 基于DDPG算法的变体飞行器自主变形决策[J]. 北京航空航天大学学报, 2022, 48(5):910-919. SANG C, GUO J, TANG S J, et al. Autonomous deformation decision making of morphing aircraft based on DDPG algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5):910-919 (in Chinese).
[34] LI R Z, WANG Q, LIU Y A, et al. Morphing strategy design for UAV based on prioritized sweeping reinforcement learning[C]//IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2020:2786-2791.
[35] XIA W B, WANG W H, ZHANG W. The optimal sweep angle design of a morphing firebee drone in a cruise mission[C]//2021 33rd Chinese Control and Decision Conference (CCDC). Piscataway:IEEE Press, 2021:5472-5477.
[36] LAMPTON A, NIKSCH A, VALASEK J. Reinforcement learning of morphing airfoils with aerodynamic and structural effects[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(1):30-50.
[37] LAMPTON A, NIKSCH A, VALASEK J. Reinforcement learning of a morphing airfoil-policy and discrete learning analysis:AIAA-2008-7281[R]. Reston:AIAA, 2008.
[38] VALASEK J, DOEBBLER J, TANDALE M D, et al. Improved adaptive-reinforcement learning control for morphing unmanned air vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008, 38(4):1014-1020.
[39] 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3):426-443. BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3):426-443 (in Chinese).
[40] NIKSCH A, VALASEK J, STRGANAC T, et al. Six degree-of-freedom dynamical model of a morphing aircraft:AIAA-2009-5849[R]. Reston:AIAA, 2009.
[41] OBRADOVIC B, SUBBARAO K. Modeling of dynamic loading of morphing-wing aircraft[J]. Journal of Aircraft, 2011, 48(2):424-435.
[42] 乐挺, 王立新, 艾俊强. Z型翼变体飞机的纵向多体动力学特性[J]. 航空学报, 2010, 31(4):679-686. YUE T, WANG L X, AI J Q. Longitudinal multibody dynamic characteristics of Z-wing morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4):679-686 (in Chinese).
[43] 何真, 陆宇平, 郑曼曼. 变体无人机栖息机动的仿真与分析[C]//第三十三届中国控制会议论文集(E卷). 北京:中国自动化学会, 2014:109-114. HE Z,LU Y P,ZHENG M M.Simulation and analysis of perching manevers for morphing UAVS[C]//Proceedings of 33rd Chinese Control Conference. Beijing:Chinese Association of Automation, 2014:109-114 (in Chinese).
[44] 郭建国, 陈惠娟, 周军, 等. 非对称伸缩翼飞行器动力学建模及特性分析[J]. 系统工程与电子技术, 2016, 38(8):1951-1957. GUO J G, CHEN H J, ZHOU J, et al. Dynamics modeling and characteristic analysis for vehicle with asymmetric span morphing wing[J]. Systems Engineering and Electronics, 2016, 38(8):1951-1957 (in Chinese).
[45] DAI P, YAN B B, LIU R F, et al. Modeling and nonlinear model predictive control of a variable-sweep-wing morphing waverider[J]. IEEE Access, 2021,9:63510-63520.
[46] GRAUER J A, HUBBARD J E. Multibody model of an ornithopter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5):1675-1679.
[47] SHI R Q, SONG J M. Modeling and control for an in-plane morphing wing[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation. Piscataway:IEEE Press, 2012:1430-1435.
[48] 蒋国江. 扑翼变形飞行器的动力学建模与飞行仿真[D]. 长沙:国防科技大学, 2015. JIANG G J. Dynamic modeling and flight simulation of flapping wing aerocraft[D]. Changsha:National University of Defense Technology, 2015 (in Chinese).
[49] WANG X M, ZHOU W Y, MU R N, et al. Modeling and simulation of mass-actuated flexible aircraft for roll control[J]. Aerospace Science and Technology, 2020, 107:106254.
[50] 童磊. 不对称变后掠翼飞行器多刚体建模与飞行控制[D]. 合肥:中国科学技术大学, 2013. TONG L. Multi-body dynamic modelling and flight control for asymmetric variable sweep airerafts[D]. Hefei:University of Science and Technology of China, 2013 (in Chinese).
[51] 张杰, 吴森堂. 一种变体飞行器的动力学建模与动态特性分析[J]. 北京航空航天大学学报, 2015, 41(1):58-64. ZHANG J, WU S T. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1):58-64 (in Chinese).
[52] GAO L, JIN H Z, ZHAO J, et al. Flight dynamics modeling and control of a novel catapult launched tandem-wing micro aerial vehicle with variable sweep[J]. IEEE Access, 2018, 6:42294-42308.
[53] MA H, SONG B F, PEI Y, et al. Efficiency change of control surface of a biomimetic wing morphing UAV[J]. IEEE Access, 2020,8:45627-45640.
[54] SVOBODA F, HROMČÍK M, HENGSTER-MOVRIC K. Distributed state feedback control for aeroelastic morphing wing flutter supression[C]//2018 26th Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2018:575-580.
[55] MORAVEJ BARZANI S H, SHAHVERDI H, AMOOZGAR M. Parametric study on the dynamic aeroelastic analysis of a two-stage axially deploying telescopic wing[J]. Journal of Vibration and Control, 2022:107754632210741.
[56] MENON A N, CHAKRAVARTHY A, GRUENWALD B C, et al. Modeling and control of uncertain hybrid structure flexible, morphing wings with stability and performance guarantees:AIAA-2020-1078[R]. Reston:AIAA, 2020.
[57] 郭东, 徐敏, 陈士橹. 弹性飞行器飞行动力学建模研究[J]. 空气动力学学报, 2013, 31(4):413-419, 436. GUO D, XU M, CHEN S L. Research on flight dynamic modeling of highly flexible aircrafts[J]. Acta Aerodynamica Sinica, 2013, 31(4):413-419, 436 (in Chinese).
[58] 沈华勋. 大柔性飞行器结构与飞行动力学建模及未建模分析[D]. 南京:南京航空航天大学, 2016. SHEN H X. Structural, flight dynamic modeling andun-modeled analysis of very flexible aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
[59] 顾鑫. 柔性折叠翼飞行器飞行动力学问题研究[D]. 南京:南京航空航天大学, 2012. GU X. Flight dynamic studies of a flexible folding wing aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
[60] HUANG R, YU X H, ZHOU X H. Efficient nonlinear aeroservoelastic modeling for morphing wing with bilinear stiffness[J]. AIAA Journal, 2021, 60(5):3135-3146.
[61] 胡巍. 变体飞行器动力学建模及气动弹性特性研究[D]. 西安:西北工业大学, 2017. HU W. Research on dynamic modeling and aeroelastic characteristics of variant aircraft[D]. Xi'an:Northwestern Polytechnical University, 2017 (in Chinese).
[62] 杨雷, 曲广吉. 航天器柔性多体系统动力学的高效建模方法[J]. 航天器工程, 1997, 6(3):13-18. YANG L, QU G J. Dynamic model of flexible multibody system with topological tree configuration[J]. Spacecraft Engineering, 1997, 6(3):13-18 (in Chinese).
[63] GADIENT R, LAVRETSKY E, WISE K. Very flexible aircraft control challenge problem:AIAA-2012-4973[R]. Reston:AIAA, 2012.
[64] KIM J K, HAN J H. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta[J]. Bioinspiration & Biomimetics, 2014, 9(1):016011.
[65] 于扬, 王正杰. 柔性翼飞行器动力学建模与循环求解仿真方法[J]. 北京理工大学学报, 2017, 37(12):1224-1228. YU Y, WANG Z J. Modelling and simulation method for flexible wing aircraft[J]. Transactions of Beijing Institute of Technology, 2017, 37(12):1224-1228 (in Chinese).
[66] MEIROVITCH L, STEMPLE T. Hybrid equations of motion for flexible multibody systems using quasicoordinates[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4):678-688.
[67] SHI R Q, SONG J M. Modeling and control for an in-plane morphing wing[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation. Piscataway:IEEE Press, 2012:1430-1435.
[68] SHI R Q, SONG J M. Dynamics and control for an in-plane morphing wing[J]. Aircraft Engineering and Aerospace Technology, 2013, 85(1):24-31.
[69] OKTAY T, COBAN S. Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs[J]. Elektronika Ir Elektrotechnika, 2017, 23(5):15-20.
[70] NEAL D, AKLE B, HESSE T. Optimal flight control of an adaptive aircraft wing modeled by NeuroFuzzy techniques[C]//Proceedings of the 2003 IEEE International Symposium on Intelligent Control. Piscataway:IEEE Press, 2003:364-370.
[71] SVOBODA F, HROMČÍK M, HENGSTER-MOVRIC K. Distributed state feedback control for aeroelastic morphing wing flutter supression[C]//2018 26th Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2018:575-580.
[72] ABBASI S H, MAHMOOD A. Modeling, simulation and control of a bio-inspired electromechanical feather for gust mitigation in flapping wing UAV[C]//2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE). Piscataway:IEEE Press, 2019:195-200.
[73] 王青, 王通, 董朝阳, 等. 变体飞行器链式平滑切换控制[J]. 控制理论与应用, 2015, 32(7):949-954. WANG Q, WANG T, DONG C Y, et al. Chained smooth switching control for morphing aircraft[J]. Control Theory & Applications, 2015, 32(7):949-954 (in Chinese).
[74] 江未来, 董朝阳, 王通, 等. 变体飞行器连续平滑切换LPV控制[J]. 系统工程与电子技术, 2015, 37(6):1347-1353. JIANG W L, DONG C Y, WANG T, et al. Continuous smooth switching LPV control for morphing aircraft[J]. Systems Engineering and Electronics, 2015, 37(6):1347-1353 (in Chinese).
[75] 江未来, 董朝阳, 王通, 等. 变体飞行器平滑切换LPV鲁棒控制[J]. 控制与决策, 2016, 31(1):66-72. JIANG W L, DONG C Y, WANG T, et al. Smooth switching LPV robust control for morphing aircraft[J]. Control and Decision, 2016, 31(1):66-72 (in Chinese).
[76] JIANG W L, DONG C Y, WANG Q. A systematic method of smooth switching LPV controllers design for a morphing aircraft[J]. Chinese Journal of Aeronautics, 2015, 28(6):1640-1649.
[77] YUE T, WANG L X, AI J Q. Gain self-scheduled H∞ control for morphing aircraft in the wing transition process based on an LPV model[J]. Chinese Journal of Aeronautics, 2013, 26(4):909-917.
[78] DONG C Y, LI W, WANG Q. H∞ control of switched systems with nonideal switchings and its application to morphing aircraft[J]. Procedia Engineering, 2013, 67:100-109.
[79] 殷明, 陆宇平, 何真. 变体飞行器LPV建模与鲁棒增益调度控制[J]. 南京航空航天大学学报, 2013, 45(2):202-208. YIN M, LU Y P, HE Z. LPV modeling and robust gain scheduling control of morphing aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(2):202-208 (in Chinese).
[80] SHAO P Y, ZHOU Z, MA S H, et al. Structural robust gain-scheduled PID control and application on a morphing wing UAV[C]//2017 36th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2017:3236-3241.
[81] SHAO P Y, WU J, WU C F, et al. Model and robust gain-scheduled PID control of a bio-inspired morphing UAV based on LPV method[J]. Asian Journal of Control, 2019, 21(4):1681-1705.
[82] 梁小辉, 王青, 董朝阳. 基于切换系统的变体飞行器鲁棒自适应控制[J]. 北京航空航天大学学报, 2019, 45(3):538-545. LIANG X H, WANG Q, DONG C Y. Robust adaptive control for morphing aircraft based on switching system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3):538-545 (in Chinese).
[83] 王青, 杨汇川, 董朝阳. 基于重叠参数区域的变体飞行器切换LPV控制[J]. 沈阳工业大学学报, 2013, 35(6):698-703. WANG Q, YANG H C, DONG C Y. Switching LPV control of morphing aircraft based on overlapped parameter area[J]. Journal of Shenyang University of Technology, 2013, 35(6):698-703 (in Chinese).
[84] WEN N, LIU Z H, SUN Y, et al. Design of LPV-based sliding mode controller with finite time convergence for a morphing aircraft[J]. International Journal of Aerospace Engineering, 2017, 2017:8426348.
[85] WEN N, LIU Z H, ZHU L P. Linear-parameter-varying-based adaptive sliding mode control with bounded L2 gain performance for a morphing aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(5):1847-1864.
[86] WU Q, LIU Z H, LIU F N, et al. LPV-based self-adaption integral sliding mode controller with-gain performance for a morphing aircraft[J]. IEEE Access, 7:81515-81531.
[87] YU X Z, HE Z. Filter-based sliding model control for distributed morphing wing structures[C]//2016 35th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2016:1067-1072.
[88] YUE T, ZHANG X Y, WANG L X, et al. Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing[J]. Aerospace Science and Technology, 2017, 70:328-338.
[89] LIU J H, SHAN J Y, HU Y S, et al. Optimal switching control for morphing aircraft with aerodynamic uncertainty[C]//2020 IEEE 16th International Conference on Control & Automation. Piscataway:IEEE Press, 2020:1167-1172.
[90] GONG L G, WANG Q, DONG C Y. Disturbance rejection control of morphing aircraft based on switched nonlinear systems[J]. Nonlinear Dynamics, 2019, 96(2):975-995.
[91] WU K J, ZHANG P X, WU H. A new control design for a morphing UAV based on disturbance observer and command filtered backstepping techniques[J]. Science China Technological Sciences, 2019, 62(10):1845-1853.
[92] WU Z H, LU J C, RAJPUT J, et al. Adaptive neural control based on high order integral chained differentiator for morphing aircraft[J]. Mathematical Problems in Engineering, 2015, 2015:787931.
[93] WU Z H, LU J C, ZHOU Q, et al. Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints[J]. Nonlinear Dynamics, 2017, 87(4):2367-2383.
[94] WU Z H, LU J C, SHI J P, et al. Robust adaptive neural control of morphing aircraft with prescribed performance[J]. Mathematical Problems in Engineering, 2017, 2017:1401427.
[95] QIAO F X, SHI J P, QU X B, et al. Adaptive back-stepping neural control for an embedded and tiltable V-tail morphing aircraft[J]. International Journal of Control, Automation and Systems, 2022, 20(2):678-690.
[96] GONG L G, WANG Q, DONG C Y, et al. Prescribed performance control of morphing aircraft based on switched nonlinear systems and reinforcement learning[J]. Measurement and Control, 2019, 52(5-6):608-624.
[97] GONG L G, WANG Q, HU C H, et al. Switching control of morphing aircraft based on Q-learning[J]. Chinese Journal of Aeronautics, 2020, 33(2):672-687.
[98] LEE H N, KIM S H, KIM Y. Policy gradient-based integral reinforcement learning for optimal control design of nonaffine morphing aircraft systems[C]//2020 28th Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2020:218-223.
[99] KIM S H, LEE H N, KIM Y. Continuous-time deterministic policy gradient-based controller for morphing aircraft without exploration[C]//2020 28th Mediterranean Conference on Control and Automation (MED). Piscataway:IEEE Press, 2020:224-229.
[100] 李广文, 贾秋玲, 章卫国, 等. 一种飞机大包线控制律增益调参方法[J]. 飞行力学, 2010, 28(1):29-31, 35. LI G W, JIA Q L, ZHANG W G, et al. Gain scheduling method of aircraft control law in the large flight envelope[J]. Flight Dynamics, 2010, 28(1):29-31, 35 (in Chinese).
[101] RAN M P, LI J C, XIE L H. A new extended state observer for uncertain nonlinear systems[J]. Automatica, 2021, 131:109772.
[102] RAN M P, WANG Q, DONG C Y, et al. Active disturbance rejection control for uncertain time-delay nonlinear systems[J]. Automatica, 2020, 112:108692.
[103] RAN M P, WANG Q, DONG C Y. Active disturbance rejection control for uncertain nonaffine-in-control nonlinear systems[J]. IEEE Transactions on Automatic Control, 2017, 62(11):5830-5836.
[104] RAN M P, XIE L H. Adaptive observation-based efficient reinforcement learning for uncertain systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021:3070852.
[105] LEE J, KIM Y. Neural network-based nonlinear dynamic inversion control of variable-span morphing aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2020, 234(10):1624-1637.
[106] 李墨吟, 马泽远, 周建平, 等. 基于神经网络的变后掠翼飞行器自适应控制方法研究[J]. 弹箭与制导学报, 2021, 41(5):73-77, 85. LI M Y, MA Z Y, ZHOU J P, et al. Research on adaptive control method of variable-sweep wing aircraft based on neural network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2021, 41(5):73-77, 85 (in Chinese).
[107] 路遥, 董朝阳, 王青, 等. 存在整数约束的分布式驱动变体飞行器控制分配[J]. 控制理论与应用, 2018, 35(8):1083-1091. LU Y, DONG C Y, WANG Q, et al. Control allocation for distributed driving morphing aircraft with integer constraints[J]. Control Theory & Applications, 2018, 35(8):1083-1091 (in Chinese).
[108] 江未来, 董朝阳, 王通, 等. 基于控制分配的一类变体飞行器容错控制[J]. 北京航空航天大学学报, 2014, 40(3):355-359. JIANG W L, DONG C Y, WANG T, et al. Fault tolerant control based on control allocation for morphing aircraft model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(3):355-359 (in Chinese).
[109] 董朝阳, 路遥, 江未来, 等. 基于布谷鸟搜索算法的一类变体飞行器容错控制[J]. 航空学报, 2015, 36(6):2047-2054. DONG C Y, LU Y, JIANG W L, et al. Fault tolerant control based on cuckoo search algorithm for a class of morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2047-2054 (in Chinese).
[110] LIANG X H, WANG Q, XU B, et al. Back-stepping fault-tolerant control for morphing aircraft based on fixed-time observer[J]. International Journal of Control, Automation and Systems, 2021, 19(12):3924-3936.