电子电气工程与控制

导航卫星辐射光压建模进展及发展趋势

  • 施闯 ,
  • 肖云 ,
  • 范磊 ,
  • 郑福 ,
  • 王成 ,
  • 黄志勇 ,
  • 李桢
展开
  • 1. 北京航空航天大学 电子信息工程学院, 北京 100083;
    2. 北京航空航天大学 前沿科学技术创新研究院, 北京 100083;
    3. 西安测绘研究所, 西安 710000;
    4. 信息工程大学 地理空间信息学院, 郑州 450002

收稿日期: 2022-05-09

  修回日期: 2022-06-07

  网络出版日期: 2022-06-27

基金资助

国家自然科学基金(41931075)

Research progress of radiation pressure modelling for navigation satellites

  • SHI Chuang ,
  • XIAO Yun ,
  • FAN Lei ,
  • ZHENG Fu ,
  • WANG Cheng ,
  • HUANG Zhiyong ,
  • LI Zhen
Expand
  • 1. School of Electronic and Information Engineering, Beihang University, Beijing 100083, China;
    2. Research Institute for Frontier Science, Beihang University, Beijing 100083, China;
    3. Xi'an Institute of Surveying and Mapping, Xi'an 710000, China;
    4. School of Geospatial Information, Information Engineering University, Zhengzhou 450002, China

Received date: 2022-05-09

  Revised date: 2022-06-07

  Online published: 2022-06-27

Supported by

National Natural Science Foundation of China (41931075)

摘要

辐射光压模型是导航卫星精密定轨的研究热点之一。辐射光压的建模方法主要有经验方法、半经验方法和解析型方法。经验方法由于简单易用、无需知道卫星相关信息等特性而得到广泛应用。但是经验光压模型得到的卫星轨道质量还有进一步提高的空间。在辐射光压建模中引入更多航天器相关的信息可以弥补经验模型的缺陷。中国北斗卫星导航系统2020年建设完成并向全球提供服务,卫星的轨道精度是系统服务性能的重要指标。更好的辐射光压模型可提高北斗卫星轨道的质量。对辐射光压建模技术及研究进展进行梳理可为开发更精准的北斗卫星辐射光压模型铺路。首先根据辐射源的不同将辐射光压分为主动类型和被动类型。然后分析了经验模型、半经验模型以及分析型物理模型的优缺点。聚焦于北斗卫星,也梳理了北斗卫星辐射光压建模的研究进展。根据以上讨论分析了目前辐射光压建模研究未解决的问题。在北斗辐射光压建模中,建议联合解析模型和经验模型的优点,切勿在精密定轨中盲目估计经验参数。

本文引用格式

施闯 , 肖云 , 范磊 , 郑福 , 王成 , 黄志勇 , 李桢 . 导航卫星辐射光压建模进展及发展趋势[J]. 航空学报, 2022 , 43(10) : 527389 -527389 . DOI: 10.7527/S1000-6893.2022.27389

Abstract

Radiation pressure modelling has been a research focus in precise orbit determination of navigation satellites. In the development of radiation pressure modelling techniques, the analytical approach and the empirical approach have been used. The empirical approaches are used more widely than the analytical approach due to simplicity and less knowledge about the space vehicle needed in developing the models. However, the orbit derived from empirical models still have space to be improved. To bring in more information about the space vehicle in developing radiation pressure models is a way to tackle the flaws of empirical approaches. Specifically, China's BeiDou system completed its constellation construction in 2020, and started providing services to global users. The orbit accuracy of BeiDou-3 satellites is an important factor for precision applications. Better radiation pressure models also contribute to improving orbit accuracy of BeiDou-3 satellites. A review of radiation pressure modelling for navigation satellites can pave the way for developing better modelling techniques. In this paper, radiation pressure is classified into "active" and "passive" cases according to whether the radiation flux is generated by the space vehicle surfaces. Then, the empirical models, semi-analytical models and analytical models are discussed in detail. The radiation pressure modelling approaches for BeiDou satellites are also reviewed. The unresolved problems in radiation pressure modelling are stated based on the above discussions. Considering both the limitations of analytical approaches and empirical approaches, we suggest that a combination of analytical approach and empirical approach could be a modelling strategy for BeiDou satellites and other navigation satellites. The empirical parameters should not be estimated blindly in precise orbit determination.

参考文献

[1] MAXWELL J C, RAWSON R, WHITE H S. A treatise on electricity and magnetism[M]. Oxford:Clarendon Press, 1873.
[2] LEBEDEV P. Experimental examination of light pressure[J]. Annalen der Physik, 1901, 6(433):1-26.
[3] NICHOLS E F, HULL G F. The pressure due to radiation[J]. Proceedings of the American Academy of Arts and Sciences, 1903, 38(20):26-50.
[4] ZIEBART M. Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape[J]. Journal of Spacecraft and Rockets, 2004, 41(5):840-848.
[5] LI Z, ZIEBART M, BHATTARAI S, et al. Fast solar radiation pressure modelling with ray tracing and multiple reflections[J]. Advances in Space Research, 2018, 61(9):2352-2365.
[6] KOPP G. Earthu2019 s incoming energy:The total solar irradiance[M]//Comprehensive Remote Sensing. Amsterdam:Elsevier, 2018:32-66.
[7] KOPP G, LEAN J L. A new, lower value of total solar irradiance:Evidence and climate significance[J]. Geophysical Research Letters, 2011, 38(1):1-7.
[8] MONTENBRUCK O, GILL E. Satellite orbits[M]. Berlin, Heidelberg:Springer, 2000.
[9] LI Z, ZIEBART M, BHATTARAI S, et al. A shadow function model based on perspective projection and atmospheric effect for satellites in eclipse[J]. Advances in Space Research, 2019, 63(3):1347-1359.
[10] ADHYA S, SIBTHORPE A, ZIEBART M, et al. Oblate earth eclipse state algorithm for low-earth-orbiting satellites[J]. Journal of Spacecraft and Rockets, 2004, 41(1):157-159.
[11] STEIGENBERGER P, THOELERT S, MONTENBRUCK O. GNSS satellite transmit power and its impact on orbit determination[J]. Journal of Geodesy, 2018, 92(6):609-624.
[12] ZIEBART M, DARE P. Analytical solar radiation pressure modelling for GLONASS using a pixel array[J]. Journal of Geodesy, 2001, 75(11):587-599.
[13] ZIEBART M, ADHYA S, SIBTHORPE A, et al. Combined radiation pressure and thermal modelling of complex satellites:Algorithms and on-orbit tests[J]. Advances in Space Research, 2005, 36(3):424-430.
[14] ADHYA S, ZIEBART M, SIBTHORPE A, et al. Thermal force modeling for precise prediction and determination of spacecraft orbits[J]. Navigation, 2005, 52(3):131-144.
[15] ADHYA S. Thermal re-radiation force modelling for the precise prediction and determination of spacecraft orbits[D]. London:University College London, 2005
[16] SIDOROV D, DACH R, POLLE B, et al. Adopting the empirical CODE orbit model to Galileo satellites[J]. Advances in Space Research, 2020, 66(12):2799-2811.
[17] DARUGNA F, STEIGENBERGER P, MONTENBRUCK O, et al. Ray-tracing solar radiation pressure modeling for QZS-1[J]. Advances in Space Research, 2018, 62(4):935-943.
[18] FLIEGEL H F, GALLINI T E, SWIFT E R. Global positioning system radiation force model for geodetic applications[J]. Journal of Geophysical Research, 1992, 97(B1):559.
[19] BAR-SEVER Y, KUANG D. New empirically-derived solar radiation pressure model for GPS satellites during eclipse seasons[R]. IPN Progress Report, 2005, 42(159):1-4.
[20] BAR-SEVER Y, KUANG D. New empirically-derived solar radiation pressure model for GPS satellites[R]. IPN Progress Report, 2004.
[21] SIBTHORPE A, WEISS J, HARVEY N, et al. Empirical modelling of solar radiation pressure forces affecting GPS satellites[R]. Washington, D.C.:NASA, 2010.
[22] SIBOIS A, SELLE C, DESAI S, et al. GSPM13:An updated empirical model for solar radiation pressure forces acting on GPS satellites[C]//IGS Workshop, 2014.
[23] SIBTHORPE A, BERTIGER W, DESAI S D, et al. An evaluation of solar radiation pressure strategies for the GPS constellation[J]. Journal of Geodesy, 2011, 85(8):505-517.
[24] BEUTLER G, BROCKMANN E. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS):Theory and initial results[J]. Manuscripta Geodaetica, 1994, 19(6):367-386.
[25] COLOMBO O L. The dynamics of global positioning system orbits and the determination of precise ephemerides[J]. Journal of Geophysical Research, 1989, 94(B7):9167.
[26] ARNOLD D, MEINDL M, BEUTLER G, et al. CODE's new solar radiation pressure model for GNSS orbit determination[J]. Journal of Geodesy, 2015, 89(8):775-791.
[27] PRANGE L, BEUTLER G, DACH R, et al. An empirical solar radiation pressure model for satellites moving in the orbit-normal mode[J]. Advances in Space Research, 2020, 65(1):235-250.
[28] INEICHEN D, BEUTLER G, HUGENTOBLER U. Sensitivity of GPS and GLONASS orbits with respect to resonant geopotential parameters[J]. Journal of Geodesy, 2003, 77(7):478-486.
[29] MARSHALL J A, LUTHCKE S B. Modeling radiation forces acting on Topex/Poseidon for precision orbit determination[J]. Journal of Spacecraft and Rockets, 1994, 31(1):99-105.
[30] ROSBOROUGH G W, ANTREASIAN P G. Radiation forces modeling for the Topex/Poseidon spacecraft[C]//Astrodynamics Conference, 1990.
[31] CERRI L, BERTHIAS J P, BERTIGER W I, et al. Precision orbit determination standards for the Jason series of altimeter missions[J]. Marine Geodesy, 2010, 33(S1):379-418.
[32] ZELENSKY N P, LEMOINE F G, ZIEBART M, et al. DORIS/SLR POD modeling improvements for Jason-1 and Jason-2[J]. Advances in Space Research, 2010, 46(12):1541-1558.
[33] RODRIGUEZ-SOLANO C J, HUGENTOBLER U, STEIGENBERGER P. Adjustable box-wing model for solar radiation pressure impacting GPS satellites[J]. Advances in Space Research, 2012, 49(7):1113-1128.
[34] MONTENBRUCK O, STEIGENBERGER P, HUGENTOBLER U. Enhanced solar radiation pressure modeling for Galileo satellites[J]. Journal of Geodesy, 2015, 89(3):283-297.
[35] BHATTARAI S, ZIEBART M, ALLGEIER S, et al. Demonstrating developments in high-fidelity analytical radiation force modelling methods for spacecraft with a new model for GPS IIR/IIR-M[J]. Journal of Geodesy, 2019, 93(9):1515-1528.
[36] TAN B F, YUAN Y B, ZHANG B C, et al. A new analytical solar radiation pressure model for current BeiDou satellites:IGGBSPM[J]. Scientific Reports, 2016, 6:32967.
[37] 毛悦, 宋小勇, 王维, 等. IGSO姿态控制模式切换期间定轨策略研究[J]. 武汉大学学报·信息科学版, 2014, 39(11):1352-1356. MAO Y, SONG X Y, WANG W, et al. IGSO satellite orbit determining strategy analysis with the yaw-steering and orbit-normal attitude control mode switching[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11):1352-1356 (in Chinese).
[38] LI X J, HU X G, GUO R, et al. Orbit and positioning accuracy for new generation Beidou satellites during the earth eclipsing period[J]. Journal of Navigation, 2018, 71(5):1069-1087.
[39] 郭靖. 姿态、光压和函数模型对导航卫星精密定轨影响的研究[D]. 武汉:武汉大学, 2014. GUO J. The impacts of attitude, solar radiation and function model on precise orbit determination for GNSS satellites[D]. Wuhan:Wuhan University, 2014 (in Chinese).
[40] 郭睿, 周建华, 胡小工, 等. 北斗IGSO卫星姿态零偏航状态下精密定轨[J]. 测绘学报, 2018, 47(S1):18-27. GUO R, ZHOU J H, HU X G, et al. Precise orbit determination for the BDS IGSO satellites under the yaw-steering mode[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(S1):18-27 (in Chinese).
[41] 毛悦, 宋小勇, 胡小工, 等. 北斗卫星轨道预报精度分析及改进[J]. 测绘科学技术学报, 2017, 34(2):124-129, 134. MAO Y, SONG X Y, HU X G, et al. Orbit prediction accuracy analysis and improvement method for BeiDou satellites[J]. Journal of Geomatics Science and Technology, 2017, 34(2):124-129, 134 (in Chinese).
[42] DILSSNER F. A note on the yaw attitude modeling of BeiDou IGSO-6[R/OL]. (2017-11-20)[2022-05-08]. ht-tp://navigation-office.esa.int/attachments_24576369_1_BeiDou_IGSO-6_Yaw_Modeling.pdf.
[43] 刘宇玺, 贾小林, 阮仁桂. 北斗系统IGSO卫星新姿态控制模式下定轨精度分析[J]. 大地测量与地球动力学, 2017, 37(6):614-617. LIU Y X, JIA X L, RUAN R G. Beidou IGSO satellite orbit determination precision analysis based on new attitude control mode[J]. Journal of Geodesy and Geodynamics, 2017, 37(6):614-617 (in Chinese).
[44] 杨宇飞, 杨元喜, 胡小工, 等. 北斗三号卫星两种定轨模式精度比较分析[J]. 测绘学报, 2019, 48(7):831-839. YANG Y F, YANG Y X, HU X G, et al. Comparison and analysis of two orbit determination methods for BDS-3 satellites[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7):831-839 (in Chinese).
[45] 蔡洪亮, 孟轶男, 耿涛, 等. 北斗三号卫星星地星间联合精密定轨初步结果[J]. 武汉大学学报·信息科学版, 2020, 45(10):1493-1500. CAI H L, MENG Y N, GENG T, et al. Initial results of precise orbit determination using satellite-ground and inter-satellite link observations for BDS-3 satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10):1493-1500 (in Chinese).
[46] 李晓杰, 刘晓萍, 祖安然, 等. 基本导航模式下BDS-3卫星地影期间的定轨精度分析[J]. 武汉大学学报·信息科学版, 2020, 45(6):854-861. LI X J, LIU X P, ZU A R, et al. Orbit accuracy for BDS-3 satellites during the earth eclipsing period in basic navigation mode[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6):854-861 (in Chinese).
[47] ZHAO Q, WANG X, HU X, et al. The solar radiation pressure modelling and parameter analysis for BeiDou satellites[C]//IGS workshop, 2017.
[48] LIU J H, GU D F, JU B, et al. A new empirical solar radiation pressure model for BeiDou GEO satellites[J]. Advances in Space Research, 2016, 57(1):234-244.
[49] 彭汉兵, 杨元喜, 王刚. 不同经验太阳光压模型对于北斗卫星定轨的适用性分析[J]. 测绘科学技术学报, 2017, 34(4):347-352. PENG H B, YANG Y X, WANG G. Application analysis of different empirical solar radiation models for orbit determination of BDS satellites[J]. Journal of Geomatics Science and Technology, 2017, 34(4):347-352 (in Chinese).
[50] 鞠冰, 昌虓, 谷德峰, 等. CODE新光压模型对北斗混合导航星座精密轨道确定的影响[J]. 国防科技大学学报, 2018, 40(1):86-92. JU B, CHANG X, GU D F, et al. Analysis of CODE's new solar radiation pressure model on precise orbit determination for mixed-type BeiDou constellation[J]. Journal of National University of Defense Technology, 2018, 40(1):86-92 (in Chinese).
[51] 毛悦, 宋小勇, 贾小林, 等. 北斗卫星ECOM光压模型参数选择策略分析[J]. 测绘学报, 2017, 46(11):1812-1821. MAO Y, SONG X Y, JIA X L, et al. Analysis about parameters selection strategy of ECOM solar radiation pressure model for BeiDou satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11):1812-1821 (in Chinese).
[52] 李冉, 胡小工, 唐成盼, 等. 北斗卫星导航系统混合星座的光压摄动建模和精度分析[J]. 武汉大学学报·信息科学版, 2018, 43(7):1063-1070. LI R, HU X G, TANG C P, et al. Modeling and precision analysis of solar radiation pressure for BDS hybrid constellation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1063-1070 (in Chinese).
[53] WANG C, GUO J, ZHAO Q L, et al. Solar radiation pressure models for BeiDou-3 I2-S satellite:Comparison and augmentation[J]. Remote Sensing, 2018, 10(1):118.
[54] 戴小蕾. 基于平方根信息滤波的GNSS导航卫星实时精密定轨理论与方法[D]. 武汉:武汉大学, 2016. DAI X L. Real-time precise GNSS satellite orbit determination using the SRIF method:Theory and implemencation[D]. Wuhan:Wuhan University, 2016 (in Chinese).
[55] DAI X L, GE M R, LOU Y D, et al. Estimating the yaw-attitude of BDS IGSO and MEO satellites[J]. Journal of Geodesy, 2015, 89(10):1005-1018.
[56] 曾添, 贾小林, 隋立芬, 等. 北斗三号组网卫星数据质量分析及单系统定轨精度初步评估[J]. 大地测量与地球动力学, 2019, 39(11):1165-1170. ZENG T, JIA X L, SUI L F, et al. Initial evaluation of Beidou-3 satellite data quality and single system precise orbit determination[J]. Journal of Geodesy and Geodynamics, 2019, 39(11):1165-1170 (in Chinese).
[57] 陈秋丽, 杨慧, 陈忠贵, 等. 北斗卫星太阳光压解析模型建立及应用[J]. 测绘学报, 2019, 48(2):169-175. CHEN Q L, YANG H, CHEN Z G, et al. Solar radiation pressure modeling and application of BDS satellite[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2):169-175 (in Chinese).
[58] 王晨. 北斗导航卫星光压模型构建与精化研究[D]. 武汉:武汉大学, 2019. WANG C. Solar radiation pressure modelling for BeiDou navigation satellites[D]. Wuhan:Wuhan University, 2019 (in Chinese).
[59] XIA F Y, YE S R, CHEN D Z, et al. Advancing the solar radiation pressure model for BeiDou-3 IGSO satellites[J]. Remote Sensing, 2022, 14(6):1460.
[60] YAN X Y, LIU C C, HUANG G W, et al. A priori solar radiation pressure model for BeiDou-3 MEO satellites[J]. Remote Sensing, 2019, 11(13):1605.
[61] 赵辉, 金双根, 罗鹏. 不同光压模型对北斗IGSO与MEO卫星定轨的适用性分析[J]. 大地测量与地球动力学, 2022, 42(1):9-14. ZHAO H, JIN S G, LUO P. Applicability of different solar radiation pressure models for Beidou IGSO and MEO satellites orbit determination[J]. Journal of Geodesy and Geodynamics, 2022, 42(1):9-14 (in Chinese).
[62] LI Z, ZIEBART M, GREY S, et al. Earth radiation pressure modelling for BeiDou IGSO Satellites[C]//China Satellite Navigation Conference, 2017.
[63] 赵群河, 王小亚, 胡小工, 等. 北斗卫星地球辐射压摄动建模研究[J]. 天文学进展, 2018, 36(1):68-80. ZHAO Q H, WANG X Y, HU X G, et al. Research on the earth radiation pressure modelling for Beidou satellites[J]. Progress in Astronomy, 2018, 36(1):68-80 (in Chinese).
[64] ZIEBART M, SPRINGER T, FLOHRER C, et al. The GPS-SLR bias:Dynamics, attitude and current experiments[C]//International Technical Laser Workshop on SLR Tracking of GNSS Constellations, 2009.
[65] LI Z, ZIEBART M. Uncertainty analysis on direct solar radiation pressure modelling for GPS IIR and Galileo FOC satellites[J]. Advances in Space Research, 2020, 66(4):963-973.
[66] LI Z. Space vehicle radiation pressure modelling:A demonstration on Galileo satellites in GNSS[D]. London:University College London, 2019.
文章导航

/