计及叶片前缘周向不均匀源项的弯掠叶片流动机理研究(校庆专刊)

  • 桂幸民 ,
  • 金东海 ,
  • 张健成 ,
  • 宋满祥 ,
  • 赵洋 ,
  • 胡大权
展开
  • 1. 北京航空航天大学
    2. 上虞中隧风机有限公司

收稿日期: 2022-05-05

  修回日期: 2022-06-24

  网络出版日期: 2022-06-27

基金资助

国家科技重大专项

Investigation of the Flow Mechanism of Swept and Bowed Blades with Considera-tion of the Circumferential Fluctuation Source Term before Blade Leading Edge

  • GUI Xing-Min ,
  • JIN Dong-Hai ,
  • ZHANG Jian-Cheng ,
  • SONG Man-Xiang ,
  • ZHAO Yang ,
  • HU Da-Quan
Expand

Received date: 2022-05-05

  Revised date: 2022-06-24

  Online published: 2022-06-27

摘要

目前弯掠叶片被广泛应用于现代叶轮机设计,以协调高负荷、高通流、高效率和喘振裕度之间的矛盾,但同时也会引发应力、振动和稳定性等问题。因此,为更好地发挥弯掠叶片的气动优势,同时减少其空间结构复杂性,需要对弯掠空气动力学有更深的机理认识。本文利用周向平均降维方法,推导获得了可定量描述的周向不均匀源项,揭示了周向不均匀性诱发叶轮机进气流场产生不同于直叶片的再平衡,进而影响弯掠叶片各基元的设计迎角,并产生叶轮机内部流场和性能特性的变化。本文采用数值仿真和SPIV实验的方法对弯掠叶片的这一机理进行了验证。结果表明弯掠叶片中,周向不均匀源项会打破原有的进气流场的径向平衡,导致进气流场的径向迁移,产生进气流场的关键参数的展向差异,改变迎角的展向分布,进而影响整个流场性能。同时,对影响进气流场的周向不均匀源项构建解析模型及机器学习代理模型,解除叶轮机进气均匀流场的传统假设,以利于三维弯掠叶片的气动设计与分析。

本文引用格式

桂幸民 , 金东海 , 张健成 , 宋满祥 , 赵洋 , 胡大权 . 计及叶片前缘周向不均匀源项的弯掠叶片流动机理研究(校庆专刊)[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2021.27371

Abstract

Swept and bowed blades have been widely used in the transonic fan/compressor of aircraft engines to harmonize the conflicts between high loading, high through-flow, high efficiency, and acceptable stall/surge margin. However, these blades can also induce stress, vibration, and stability problems. Therefore, to better apply the advantages of swept blades to fans/compressors and reduce the complexity of their spatial structure, we need a deeper mechanis-tic understanding of swept and bowed aerodynamics. In this paper, the circumferential averaging method is used to derive a quantitatively describable circumferential fluctuation source term, which reveals that the circumferential fluctuation induces a re-equilibrium of the fan/compressor inlet flow field different from that of a straight blade and which in turn affects the design incidence angle of each base element of the swept blade and produces changes in the flow field and performance characteristics of the fan/compressor. This mechanism of the curved blade is verified by numerical simulation and SPIV experiments. The results show that the circumferential fluctuation source term in the curved blade can break the radial equilibrium of the original inlet field, leading to the radial migration of the inlet field, generating the spanwise differences of the key parameters of the inlet field, changing the spanwise distribution of the incidence angle, and thus affecting the overall flow field performance. Meanwhile, an analytical model and a machine learning model are constructed for the circumferential fluctuation source terms affecting the inlet flow field to release the traditional assumption of a uniform flow field of inlet air, to facilitate the aerodynamic design and anal-ysis of the 3D swept and bowed blade.

参考文献

[1]VIARS P.The impact of IHPTET on the engine/aircraft system[C]//Aircraft Design and Operations Meeting. 1989: 2137.
[2]Rolls-Royce, Trent 1000- the Engine Walkthrough[R], lectured in BUAA, March, 2006.
[3]李晓娟.风扇增压级内流场特性数值模拟与设计研究[D]. 北京: 北京航空航天大学, 2008:72-91.
[4]LI X J.Performance Numerical Investigation and De-sign of Fan/Compressor[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2008: 72-91 (in Chi-nese).
[5]金海良.周向平均方法在多级轴流风扇/压气机设计与分析中的应用[D]. 北京: 北京航空航天大学, 2011:41-59.
[6]JIN H L.Application of Circumferential Average meth-od in Multistage Axial Fan/Compressor Design and Analysis[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2011: 41-59 (in Chinese).
[7]朱芳.民用航空发动机高通流高效率风扇/增压级设计技术研究[D]. 北京: 北京航空航天大学, 2013:37-57.
[8]ZHU F.Study on Design Techniques of High Through-Flow and High Efficiency Fan/Booster of Civil Aeroengine[D]. Beijing: Beijing University of Aero-nautics and Astronautics, 2013: 37-57 (in Chinese).
[9]昌皓.轴流压气机掠叶片流动机理与设计应用研究[D]. 北京: 北京航空航天大学, 2015:53-80.
[10]CHANG H.Study on Flow Mechanism of Blade Sweep in Axial Compressors and the Application in Design Process[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2015: 53-80 (in Chinese).
[11]唐明智.叶轮机周向不均匀性建模及对弯掠特性影响的研究[D]. 北京: 北京航空航天大学, 2018:68-98.
[12]Tang M Z.Modeling and Analysis of Circumferential Non-uniformity in Turbomachinery and Its Influence on Blade Bow and Sweep Characteristics[D]. Beijing: Bei-jing University of Aeronautics and Astronautics, 2018: 68-98(in Chinese).
[13]温磊.掠叶片流动机理研究与实验分析[D]. 北京: 北京航空航天大学, 2018:6-70.
[14]WEN L.Study and experimental analysis of the flow mechanism of the swept blade[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2018: 6-70(in Chinese).
[15]Gui Xingmin, Zhu Fang, Jin Donghai, Aerodynam-ic Design Report of Tested Scaled Fan, Beijing Univer-sity of Aeronautics and Astronautics, Beijing, (2012).[R].
[16]闫嘉祥.基于整机试验的某风扇改进设计[D]. 北京: 北京航空航天大学, 2019:36-45.
[17]YAN J X.Improved Design of a Fan Based on the Turbofan Engine Test[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2019: 36-45(in Chinese).
[18]HORLOCK J H, DENTON J D.A review of some early design practice using computational fluid dynam-ics and a current perspective[J].J. Turbomach., 2005, 127(1):5-13
[19]桂幸民, 金东海.航空叶轮机原理及设计基础[M]. 科学出版社, 2022.
[20]GUI X M, JIN D H.Turbomachinery principles and design fundamentals[M]. Science Press, 2022.
[21]BEATTY L A, SAVAGE M, EMERY J C.Low-speed Cascade Tests of Two 45 Degree Swept Compressor Blades with Constant Spanwise Loading[R]. 1954.
[22]GODWIN W R.Effect of sweep on performance of compressor blade sections as indicated by swept-blade rotor, unswept-blade rotor, and cascade tests[R]. 1957.
[23]SMITH L H, YEH H.Sweep and Dihedral Effects in Axial-Flow Turbomachinery[J][J].Journal of Basic Engineering, 1963, 85(3):401-414
[24]LEWIS R I, HILL J M.The influence of sweep and dihedral in turbomachinery blade rows[JOL][J].Journal of Mechanical Engineering Science, 1971, 13(4):266-285
[25]BLISS D, HAYDEN R, MURRAY B, et al.Design considerations for a novel low source noise transonic fan stage[C/OL]//3rd Aeroacoustics Conference. 1976: 577.
[26]LUCAS J, WOODWARD R, MACKINNON M.Acoustic evaluation of a novel swept-rotor fan[C/OL]//11th Fluid and PlasmaDynamics Confer-ence. 1978: 1121.
[27]HAYDEN R E, BLISS D B, MURRAY B S, et al.. Analysis and design of a high tip speed, low noise air-craft fan incorporating swept leading edge rotor and sta-tor blades[R]. 1977.
[28]NEUBERT R J, HOBBS D E, WEINGOLD H.Appli-cation of sweep to improve the efficiency of a transonic fanI - Design[J].Journal of Propulsion and Power, 1995, 11(1):49-54
[29]RABE D, HOYING D, KOFF S.Application of sweep to improve efficiency of a transonic fan. II-Performance and laser test results[C]//27th Joint Propulsion Confer-ence. 1991: 2544.
[30]CREASON T, BAGHDADI S.Design and test of a low aspect ratio fan stage[C]//24th Joint Propulsion Conference. 1988: 2816.
[31]WENNERSTROM A J, FROST G R.Design of a 1500 ft/sec, transonic, high-through-flow, single-stage axial-flow compressor with low hub/tip ratio[R]. AIR FORCE AERO PROPULSION LAB WRIGHT-PATTERSON AFB OH, 1976.
[32]WENNERSTROM A J, DEROSE R D, LAW C H, et al.Investigation of a 1500 ft/sec, transonic, high-through-flow, single-stage axial-flow compressor with low hub/tip ratio[R]. AIR FORCE AERO PROPULSION LAB WRIGHT-PATTERSON AFB OH, 1976.
[33]WENNERSTROM A J.Experimental study of a high-throughflow transonic axial compressor stage[J].ASME. J. Eng. Gas Turbines Power, 1984, 106(3):552-560
[34]WENNERSTROM A J, PUTERBAUGH S L.A three-dimensional model for the prediction of shock losses in compressor blade rows[J].ASME. J. Eng. Gas Tur-bines Power, 1984, 106(2):295-299
[35]HAH C, WENNERSTROM A J.Three-Dimensional Flowfields Inside a Transonic Compressor With Swept Blades[J][J].ASME. J. Turbomach, 1991, 113(2):241-250
[36]COPENHAVER W W, HAH C, PUTERBAUGH S L.Three-Dimensional Flow Phenomena in a Transonic,High-Through-Flow,Axial-Flow Compressor Stage[J].ASME. J. Turbomach, 1993, 115(2):240-248
[37]PUTERBAUGH S L, COPENHAVER W W, HAH C, et al.A Three-Dimensional Shock Loss Model Applied to an Aft-Swept,Transonic Compressor Rotor[J].ASME. J. Turbomach, 1997, 119(3):452-459
[38]WADIA A, SZUCS P N, CRALL D W.Inner Work-ings of Aerodynamic Sweep[J].ASME. J. Turbomach, 1998, 120(4):671-682
[39]HAH C, PUTERBAUGH S L, WADIA A R.Control of Shock Structure and Secondary Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep[C] //Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 1998, 78620: V001T01A132.
[40]DENTON J D, XU L.The Effects of Lean and Sweep on Transonic Fan Performance[C] //Turbo Expo: Power for Land, Sea, and Air. 2002, 3610: 23-32.
[41]DENTON J D, XU L.The exploitation of three-dimensional flow in turbomachinery design[J] Journal of Mechanical Engineering Science. 1998, 213(2):125-137.
[42]MOHAMMED K, RAJ D.Investigations on Axial Flow Fan Impellers With Forward Swept Blades[J]. ASME. J. Fluids Eng. 1977, 99(3): 543–547.
[43]SASAKI T, BREUGELMANS F.Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance[J] ASME[J].J. Turbomach, 1998, 120(3):454-463
[44]GALLIMORE S, BOLGER J, CUMPSTY N, et al.The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading: Part I — University Re-search and Methods Development[J].J. Turbomach, 2002, 124(4):521-532
[45]GALLIMORE S J, BOLGER J J, CUMPSTY N A, et al.The use of sweep and dihedral in multistage axial flow compressor blading—part II: low and high-speed designs and test verification[J].J. Turbomach., 2002, 124(4):533-541
[46]RAMAKRISHNA P V, GOVARDHAN M.Study of sweep and induced dihedral effects in subsonic axial flow compressor passages—part I: design considera-tions—changes in incidence, deflection, and streamline curvature[J]. International Journal of Rotating Machin-ery, 2009, 2009:1-11.
[47]RAMAKRISHNA P V, GOVARDHAN M.Combined Effects of Forward Sweep and Tip Clearance on the Performance of Axial Flow Compressor Stage[C]// Turbo Expo: Power for Land, Sea, and Air. 2009, 48883: 273-282.
[48]KWEDIKHA A R.Aerodynamic effects of blade sweep and skew applied to rotors of axial flow turbomachin-ery[D]. Hungary: Budapest University of Technology and Economics, 2015:24
[49]VAD J, KWEDIKHA A R, JABERG H.Effects of blade sweep on the performance characteristics of axial flow turbomachinery rotors[J].Journal of Power and Energy, 2006, 220(7):737-749
[50]VAD J, KWEDIKHA A R A, JABERG H.Influence of Blade Sweep on the Energetic Behavior of Axial Flow Turbomachinery Rotors at Design Flow Rate[C]// Tur-bo Expo: Power for Land, Sea, and Air. 2004, 41707: 447-456.
[51]桂幸民周拜豪.压缩系统跨音进口级弯掠叶片空气动力学概述[J].航空动力学报, 1995, 10(4):407-
[52]GUI X M, ZHOU B H, Overview on Aerodynamics of the Transonic Inlet Swept and Curved Blade in Com-pression System[J].Journal of Aerospace Power, 1995, 10(4): 407-411(in Chinese).
[53]ZHU F, JIN D, GUI X.Design and Numerical Investi-gation of High-Through-Flow Transonic Fans with Swept and Straight Blade[C]//International Gas Tur-bine Congress. Osaka, Japan, 2011.
[54]GUI X, ZHU F, WAN K, et al.Effects of inlet circum-ferential fluctuation on the sweep aerodynamic perfor-mance of axial fanscompressors[J].Journal of thermal science, 2013, 22(5):383-394
[55]BENINI E, BIOLLO R.Aerodynamics of swept and leaned transonic compressor-rotors[J].Applied energy, 2007, 84(10):1012-1027
[56]RAMAKRISHNA P V, GOVARDHAN M.Numerical study of the stagger angle effects in forward swept axial compressor rotor passages[C]//Turbo Expo: Power for Land, Sea, and Air: 44021. 2010: 443-453.
[57]WU C H.A general though-flow theory of fluid flow with subsonic or supersonic velocity in turbomachines of arbitrary hub and casing shapes[R]. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON DC, 1951.
[58]WU C H.A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial, and mixed-flow types[R]. National Aeronautics and Space Administration Washington DC, 1952.
[59]NOVAK R A.Streamline curvature computing proce-dures for fluid-flow problems[J]. ASME. J. Eng. Power. October 1967; 89(4): 478–490..
[60]SMITH L H Jr.The Radial-Equilibrium Equation of Turbomachinery[J]. ASME. J. Eng. Power. January 1966; 88(1): 1–12.
[61]李根深, 陈乃兴, 强国芳.船用燃气轮机轴流式叶轮机械气动热力学(原理、设计与试验研究)[M]. 北京: 国防工业出版社, 1980:102-103.
[62]LI G S, CHEN N X, QIANG G F, Aerothermodynam-ics of Axial Turbomachinery in Marine Gas Turbine: Principle, Design and Test[M].Beijing: National De-fence Industry Press, 1980: 102-103(in Chinese).
[63]桂幸民.轴流风扇压气机可控激波跨音级设计模型研究[D]. 北京: 北京航空航天大学, 1993: 25-28.
[64]GUI X M.The Research on the Model of Contrallable Shock Wave Used in the Design of Transonic Axial Fan/Compressor Stage[D]. Beijing: Beijing University of Aeronautics and Astronautics, 1993: 25-28 (in Chi-nese).
[65]GUI X, ZHOU S.A Transonic Compressor Design Methodology Including the Influence of 3D Passage Shock Waves[C]// Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 1999, 78583: V001T03A017.
[66]SIMON J F.Contribution to throughflow modelling for axial flow turbomachines[D]. Belgium: University of Liège, 2007:119-154.
[67]THOMAS J P, LéONARD O.Toward a High Order Throughflow—-Investigation of the Nonlinear Har-monic Method Coupled With an Immersed Boundary Method for the Modeling of the Circumferential Stress-es[J]. ASME. J. Turbomach. January 2012; 134(1): 011017.
[68]WAN K, JIN H, JIN D, et al.Influence of non-axisymmetric terms on circumferentially averaged method in fancompressor[J].Journal of Thermal Sci-ence, 2013, 22(1):13-22
[69]BARALON S, ERIKSSON L E, H?LL U.Evaluation of Higher-Order Terms in the Throughflow Approxima-tion Using 3D Navier-Stokes Computations of a Tran-sonic Compressor Rotor[C]// Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 1999, 78583: V001T03A013.
[70]WENNERSTROM A J.Design of highly loaded axial-flow fans and compressors[M]. Vermont, USA: Con-cepts ETI, Inc.,2000:24.
[71]VAD J, KWEDIKHA A R, HORVáTH C, et al.Aero-dynamic effects of forward blade skew in axial flow ro-tors of controlled vortex design[J].Journal of Power and Energy, 2007, 221(7):1011-1023
[72]MCNULTY G, DECKER J J, BEACHER B, et al.The Impact of Forward Swept Rotors on Tip Clearance Flows in Subsonic Axial Compressors[J].J. Tur-bomach., 2004, 126(4):445-454
[73]唐明智, 金东海, 郭昕, 等.叶轮机通流模型周向脉动应力项建模及分析[J].工程热物理学报, 2018, 39(9):10-
[74]TANG M Z, JIN D H, GUO X, et al.Modeling and Analysis of the Circum ferential Fluctuation Stresses in Turbo machinery Throughflow Model[J].Journal of Enginee Ring The Rmophysics, 2018, 39(9):1-10
[75]TANG M, JIN D, GUI X.Modeling and numerical investigation of the inlet circumferential fluctuations of swept and bowed blades[J].Journal of Thermal Science, 2017, 26(1):1-10
[76]WU C H, BROWN C A.A theory of the direct and inverse problems of compressible flow past cascade of arbitrary airfoils[J].Journal of the Aeronautical Scienc-es, 1952, 19(3):183-196
[77]WU C H, BROWN C A, PRIAN V D.An approximate method of determining the subsonic flow in an arbitrary stream filament of revolution cut by arbitrary tur-bomachine blades[R]. 1952.
[78]THOMAS J P, LE\’ ONARD O.Investigating Circum-ferential Non-Uniformities in Throughflow Calculations Using an Harmonic Reconstruction[C]//Turbo Expo: Power for Land, Sea, and Air: 43161. 2008: 2229-2241.
[79]YUE Z, LI Z, JIN D, et al.A Model of Inlet Circumfer-ential Fluctuation in Compressor Cascades[C]//Turbo Expo: Power for Land, Sea, and Air: 84089. American Society of Mechanical Engineers, 2020: V02CT35A056.
[80]BRUNTON S L, NOACK B R, KOUMOUTSAKOS P.Machine learning for fluid mechanics[J]. Annual Re-view of Fluid Mechanics, 2020, 52: 477-508.
文章导航

/