基于晶体塑性理论的高-低周疲劳寿命预测统一准则
收稿日期: 2022-04-19
修回日期: 2022-05-05
录用日期: 2022-06-20
网络出版日期: 2022-06-27
基金资助
国家自然科学基金(52005185)
A unified criterion for high⁃low cycle fatigue life prediction based on crystal plasticity theory
Received date: 2022-04-19
Revised date: 2022-05-05
Accepted date: 2022-06-20
Online published: 2022-06-27
Supported by
National Natural Science Foundation of China(52005185)
在晶体塑性有限元的框架下建立了关于镍基合金Inconel 718(IN718)从低周疲劳(LCF)到高周疲劳(HCF)的寿命预测统一准则。在介观尺度下通常借助疲劳指示因子(FIP)进行寿命预测,例如基于FIP累积能量耗散可较好地预测IN718的LCF寿命,但对于HCF寿命的预测过于非保守,从而使工程构件面临过早疲劳失效的风险。因此在累积能量耗散的基础上考虑有效弹性能,定义一个新的FIP,即有效能。假设有效能的临界值是一个与加载条件无关的常数,当每周次的有效能累加到这个临界值时材料的疲劳寿命便可被确定。基于有效能的寿命预测准则不仅可较好地预测IN718的LCF寿命,还可较好地预测IN718的HCF寿命。然而结果显示不同应变幅下的有效能临界值并不相等,且不同应变幅下的有效能临界值与每周次的有效能间成双对数线性关系。基于此对基于有效能的寿命预测准则进行进一步的修正。结果表明修正的寿命预测准则不仅对LCF和HCF寿命有较高的预测精度,且其寿命预测稳定性也有提高。
王秀锐 , 李凯尚 , 谷行行 , 张勇 , 陆体文 , 王润梓 , 张显程 . 基于晶体塑性理论的高-低周疲劳寿命预测统一准则[J]. 航空学报, 2023 , 44(10) : 427300 -427300 . DOI: 10.7527/S1000-6893.2022.27300
A life prediction unified criterion is developed for Inconel 718 (IN718) from Low Cycle Fatigue (LCF) to High Cycle Fatigue (HCF) within the crystal plasticity finite element framework. On the mesoscopic scale, the life prediction is completed with the help of Fatigue Indicator Parameter (FIP). For example, the LCF life is predicted well based on the FIP accumulated energy dissipation for IN718, while the predicted HCF life is too non-conservative, which will make the engineering components face the risk of advanced fatigue failure. Therefore, a new FIP, effective energy, is developed by the combination of effective elastic energy and accumulated energy dissipation. The critical value of effective energy is assumed to be a loading-condition-independent constant. When the effective energy per cycle is added up to the critical value, the fatigue life of the material can be determined. Not only the LCF life of IN718 but also the HCF life of IN718 is predicted well based on effective energy. However, results show that the critical values of effective energy for different strain amplitudes are not equal. And there is a double logarithmic linear relationship between the critical values of effective energy and effective energy per cycle under different strain amplitudes. Based on this, the life prediction criterion based on effective energy is modified. Results show that the modified life prediction criterion not only has higher life prediction accuracy but also has better life prediction stability for LCF and HCF life.
1 | AKCA E, GüRSEL A. A review on superalloys and IN718 nickel-based INCONEL superalloy[J]. Periodicals of Engineering and Natural Sciences (PEN), 2015, 3(1): 47. |
2 | TOKAJI K, TAKAFUJI S, OHYA K, et al. Fatigue behaviour of beta Ti-22V-4Al alloy subjected to surface-microstructural modification[J]. Journal of Materials Science, 2003, 38(6): 1153-1159. |
3 | 轩福贞, 朱明亮, 王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6): 26-51. |
XUAN F Z, ZHU M L, WANG G B. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering, 2021, 57(6): 26-51 (in Chinese). | |
4 | 王润梓, 廖鼎, 张显程, 等. 高温结构蠕变疲劳寿命设计方法: 从材料到结构[J]. 机械工程学报, 2021, 57(16): 66-86, 105. |
WANG R Z, LIAO D, ZHANG X C, et al. Creep-fatigue life design methods in high-temperature structures: From materials to components[J]. Journal of Mechanical Engineering, 2021, 57(16): 66-86, 105 (in Chinese). | |
5 | SUN L, BAO X G, GUO S J, et al. The creep-fatigue behavior of a nickel-based superalloy: Experiments study and cyclic plastic analysis[J]. International Journal of Fatigue, 2021, 147: 106187. |
6 | BASQUIN O H. The exponential law of endurance tests[J]. Proceeding of the American Society for Testing and Materials, 1910, 10: 625-630. |
7 | MORROW J. Cyclic plastic strain energy and fatigue of metals[C]∥ ASTM STP. West Conshohocken: ASTM, 1965: 45-87. |
8 | GOODMAN J. Mechanics applied to engineering[M]. London: Longmans, Green and Co., 1930. |
9 | MANSON S. Behavior of materials under conditions of thermal stress: NACA TN 2933[R]. Washington, D.C.: NACA, 1953. |
10 | COFFIN L. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the ASME, 1954, 76: 931-940. |
11 | YANG S, YANG L, WANG Y R. Determining the fatigue parameters in total strain life equation of a material based on monotonic tensile mechanical properties[J]. Engineering Fracture Mechanics, 2020, 226: 106866. |
12 | MANONUKUL A, DUNNE F P E. High- and low-cycle fatigue crack initiation using polycrystal plasticity[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2047): 1881-1903. |
13 | YUAN G J, ZHANG X C, CHEN B, et al. Low-cycle fatigue life prediction of a polycrystalline nickel-base superalloy using crystal plasticity modelling approach[J]. Journal of Materials Science & Technology, 2020, 38: 28-38. |
14 | CRUZADO A, LUCARINI S, LLORCA J, et al. Microstructure-based fatigue life model of metallic alloys with bilinear Coffin-Manson behavior[J]. International Journal of Fatigue, 2018, 107: 40-48. |
15 | KORSUNSKY A M, DINI D, DUNNE F P E, et al. Comparative assessment of dissipated energy and other fatigue criteria[J]. International Journal of Fatigue, 2007, 29(9-11): 1990-1995. |
16 | ZHANG K S, JU J W, LI Z H, et al. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity[J]. Mechanics of Materials, 2015, 85: 16-37. |
17 | SANGID M D, MAIER H J, SEHITOGLU H. A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals[J]. Acta Materialia, 2011, 59(1): 328-341. |
18 | SWEENEY C A, O’BRIEN B, DUNNE F P E, et al. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy[J]. Acta Materialia, 2014, 78: 341-353. |
19 | YUAN G J, WANG R Z, GONG C Y, et al. Investigations of micro-Notch effect on small fatigue crack initiation behaviour in nickel-based alloy GH4169: Experiments and simulations[J]. International Journal of Fatigue, 2020, 136: 105578. |
20 | YUAN G J, WANG R Z, ZHU W B, et al. Experimental and simulated investigations of low cycle fatigue behavior in a nickel-based superalloy with different volume fractions of δ phase[J]. International Journal of Fatigue, 2021, 153: 106411. |
21 | JIANG Y Y, OTT W, BAUM C, et al. Fatigue life predictions by integrating EVICD fatigue damage model and an advanced cyclic plasticity theory[J]. International Journal of Plasticity, 2009, 25(5): 780-801. |
22 | ZHANG X C, LI H C, ZENG X, et al. Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase[J]. Materials Science and Engineering: A, 2017, 682: 12-22. |
23 | PRAVEEN K, SASTRY G S, SINGH V. Room temperature LCF behaviour of superalloy IN 718[J]. Transactions of the Indian Institute of Metals, 2004, 57(6): 623-630. |
24 | LIU L L, HU D Y, LI D, et al. Effect of grain size on low cycle fatigue life in compressor disc superalloy GH4169 at 600 ℃[J]. Procedia Structural Integrity, 2017, 7: 174-181. |
25 | KUMAR S, CHATTOPADHYAY K, SINGH V, et al. Low cycle fatigue life of the alloy IN718 enhanced through surface nanostructuring[J]. Materials Characterization, 2020, 159: 110066. |
26 | PRAVEEN K V U, SINGH V. Effect of cold rolling on the Coffin-Manson relationship in low-cycle fatigue of superalloy IN718[J]. Metallurgical and Materials Transactions A, 2008, 39(1): 79-86. |
27 | SINGH V. Effects of prior cold working on low cycle fatigue behavior of stainless steels, titanium alloy timetal 834 and superalloy IN 718: A review[J]. Transactions of the Indian Institute of Metals, 2010, 63(2): 167-172. |
28 | PRAVEEN K V U, SINGH V. Effect of heat treatment on Coffin-Manson relationship in LCF of superalloy IN718[J]. Materials Science and Engineering: A, 2008, 485(1-2): 352-358. |
29 | ETRIS S F, FIORINI Y R, LIEB K C, et al. Strain fatigue and tensile behavior of Inconel? 718 from room temperature to 650℃[J]. Journal of Testing and Evaluation, 1974, 2(4): 249. |
30 | 潘磊. 考虑车削表面状态的GH4169镍基高温合金疲劳寿命模型研究[D]. 南京: 南京航空航天大学, 2020. |
PAN L. Research on fatigue life model of GH4169 nickel-based superalloy considering turning surface integrity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
31 | 燕怒, 韩晓琪, 余泳华, 等. GH4169镍基高温合金的超高周疲劳性能[J]. 机械工程材料, 2016, 40(4): 9-12. |
YAN N, HAN X Q, YU Y H, et al. Very high cycle fatigue properties of GH4169 Ni-based superalloy[J]. Materials for Mechanical Engineering, 2016, 40(4): 9-12 (in Chinese). | |
32 | ZHAO X, ZHAO J J, LIU Y J. Fatigue behavior of GH4169 alloy up to very high cycles[J]. Advanced Materials Research, 2012, 535-537: 928-931. |
33 | 陈永红. Inconel718镍基高温合金的低温高周疲劳性能[J]. 上海钢研, 2005(2): 44-47. |
CHEN Y H. Low temperature and high cycle fatigue properties of Inconel718 nickel-base superalloy[J]. Shonghai Steel & Iron Research, 2005(2): 44-47 (in Chinese). | |
34 | MA X F, DUAN Z, SHI H J, et al. Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime[J]. Journal of Zhejiang University-Science A, 2010, 11(10): 727-737. |
35 | ZHANG T L, YUAN H, YANG S. Microstructural characterization and fatigue performance of the recast material induced by laser manufacturing of a nickel-based superalloy[J]. Journal of Materials Processing Technology, 2021, 293: 117087. |
36 | ZHONG L Q, HU H, LIANG Y L, et al. High cycle fatigue performance of inconel 718 alloys with different strengths at room temperature[J]. Metals, 2018, 9(1): 13. |
37 | NAGATA N, SATO S, KATADA Y. Low cycle fatigue behavior of pressure vessel steels in high temperature pressurized water[J]. ISIJ International, 1991, 31(1): 106-114. |
38 | HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413. |
39 | ASARO R J, RICE J R. Strain localization in ductile single crystals[J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309-338. |
40 | PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976. |
41 | BUSSO E. Cyclic deformation of monocrystalline nickel aluminide and high temperature coatings[D]. Cambridge: Massachusetts Institute of Technology, 1990. |
42 | LI D F, GOLDEN B J, O’DOWD N P. Multiscale modelling of mechanical response in a martensitic steel: A micromechanical and length-scale-dependent framework for precipitate hardening[J]. Acta Materialia, 2014, 80: 445-456. |
43 | FREDERICK C O, ARMSTRONG P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures, 2007, 24(1): 1-26. |
44 | SKELTON R P, VILHELMSEN T, WEBSTER G A. Energy criteria and cumulative damage during fatigue crack growth[J]. International Journal of Fatigue, 1998, 20(9): 641-649. |
45 | SWEENEY C A, O’BRIEN B, DUNNE F P E, et al. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46: 244-260. |
46 | SUN X, CHOI K S, LIU W N, et al. Predicting failure modes and ductility of dual phase steels using plastic strain localization[J]. International Journal of Plasticity, 2009, 25(10): 1888-1909. |
47 | SAUZAY M. Cubic elasticity and stress distribution at the free surface of polycrystals[J]. Acta Materialia, 2007, 55(4): 1193-1202. |
48 | LU Y S, ZHU Z W, LI D Y, et al. Constitutive model of 42CrMo steel under a wide range of strain rates based on crystal plasticity theory[J]. Materials Science and Engineering: A, 2017, 679: 215-222. |
49 | LIN B, ZHAO L G, TONG J, et al. Crystal plasticity modeling of cyclic deformation for a polycrystalline nickel-based superalloy at high temperature[J]. Materials Science and Engineering: A, 2010, 527(15): 3581-3587. |
50 | BUSSO E P, MEISSONNIER F T, O’DOWD N P. Gradient-dependent deformation of two-phase single crystals[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(11): 2333-2361. |
51 | YUAN G J, CHEN H, LI D F, et al. The effect of δ phase on the microplasticity evolution of a heat-treated nickel base superalloy[J]. Mechanics of Materials, 2020, 148: 103520. |
/
〈 |
|
〉 |