基于标量化处理的协同航弹高精度导航系统
收稿日期: 2022-06-01
修回日期: 2022-06-16
录用日期: 2022-06-22
网络出版日期: 2022-06-24
High precision navigation system of cooperative aerial bomb based on scalar processing
Received date: 2022-06-01
Revised date: 2022-06-16
Accepted date: 2022-06-22
Online published: 2022-06-24
针对协同航弹应用项目提出的低成本、高精度等硬性需求,设计了以紧组合为组合方式的高精度组合导航系统,且对导航系统运算进行了标量化处理,大幅提升了协同航弹的系统性能。导航系统主要由以卫星接收机输出的伪距、伪距率为量测量的紧组合导航构成,与捷联惯导构成反馈校正,可在不同卫星环境下达到较高的导航精度。但由于高精度导航系统算法复杂,滤波器中矩阵需进行迭代运算,因此极大影响了系统的运算效率。为提高系统运算速度和提升系统性能,将方程中量测矩阵进行拆分,并对运算中的稀疏矩阵进行标量化处理。该方法省略了算法运算中大量的乘法运算和加法运算,将运算时长缩短至原来的17.9%。最后对此系统进行了外场航弹飞行试验,结果表明所设计的系统的导航定位精度较高,完全满足项目导航需求。
车沣竺 , 米长伟 , 张昊平 , 张鑫 . 基于标量化处理的协同航弹高精度导航系统[J]. 航空学报, 2023 , 44(S1) : 727632 -727632 . DOI: 10.7527/S1000-6893.2022.27632
To meet the requirements of low cost and high precision of the project, a high-precision integrated navigation system is designed for the cooperative aerial missile application platform. The system operation is scalarized, which greatly improves the performance of the cooperative aerial bomb. The navigation system is mainly composed of tight integrated navigation with pseudo range and pseudo range rate measured by the satellite receiver and feedback correction with strapdown inertial navigation, which can achieve high navigation accuracy in different satellite environments. However, due to the complex algorithm of high-precision navigation system, the matrix in the filter needs iterative operation, which greatly affects the operation efficiency of the system. To improve the system operation speed and system performance, the measurement matrix in the equation is split, and the sparse matrix in the operation is scalarized. This method omits a large number of multiplication operations in the algorithm operation, and shortens the operation time to the original 17.9%. Finally, the aerial missile flight test of the system is carried out. The results show that the navigation and positioning accuracy of the proposed system is high, which fully meets the navigation requirements of the project.
1 | 曾华, 樊波, 倪磊, 等. 多导弹协同作战目标分配方法研究[J]. 飞航导弹, 2016(9): 75-79. |
ZENG H, FAN B, NI L, et al. Research on target assignment method of multi-missile cooperative operation[J]. Aerodynamic Missile Journal, 2016(9): 75-79 (in Chinese). | |
2 | 方洋旺, 程昊宇, 仝希. 网络化制导技术研究现状及发展趋势[J]. 航空兵器, 2018, 25(5): 3-20. |
FANG Y W, CHENG H Y, TONG X. Research progress and prospects of networked guidance technique[J]. Aero Weaponry, 2018, 25(5): 3-20 (in Chinese). | |
3 | 张帆. 捷联惯性导航与卫星导航紧组合系统关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2021: 1-11. |
ZHANG F. Key technologies for SINS/GNSS tightly coupled integrated navigation system[D]. Harbin: Harbin Engineering University, 2021: 1-11 (in Chinese). | |
4 | 陈红梅, 常林江, 徐振方, 等. 复杂环境下GNSS/INS/UWB紧组合的无人机协同导航算法[J]. 仪器仪表学报, 2021, 42(7): 98-107. |
CHEN H M, CHANG L J, XU Z F, et al. UAV collaborative navigation algorithm based on tight combination of GNSS/INS/UWB in complex environment[J]. Chinese Journal of Scientific Instrument, 2021, 42(7): 98-107 (in Chinese). | |
5 | 何晓峰. 北斗/微惯导组合导航方法研究[D]. 长沙: 国防科技大学, 2009: 10-17. |
HE X F. Algorithms for BD/MIMU integrated navigation systems[D]. Changsha: National University of Defense Technology, 2009: 10-17 (in Chinese). | |
6 | 刘箴, 李沛, 吴馨远. 微型精确制导弹药发展现状分析[J]. 飞航导弹, 2020(7): 1-6. |
LIU Z, LI P, WU X Y. Analysis of development status of micro precision guided ammunition[J]. Aerodynamic Missile Journal, 2020(7): 1-6 (in Chinese) | |
7 | JENNINGS G. Boeing touts ground launched SDB[J]. Jane’s Missiles and Rockets, 2013,17(7): 8. |
8 | 殷希梅, 康焰清. 无人机载精确制导炸弹技术发展趋势[J]. 兵工自动化, 2021, 40(9): 92-96. |
YIN X M, KANG Y Q. Development trend of UAV-borne precision guided bomb technology[J]. Ordnance Industry Automation, 2021, 40(9): 92-96 (in Chinese). | |
9 | 赵伟, 袁信, 林雪原. 采用H∞滤波器的GPS/INS全组合导航系统研究[J]. 航空学报, 2002, 23(3): 265-267. |
ZHAO W, YUAN X, LIN X Y. Research on complete GPS/INS integration using H∞ filter[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(3): 265-267 (in Chinese). | |
10 | 陈家斌,袁信.伪距解除相关法在GPS/SINS紧组合系统中的应用研究[J].航空学报,1995,16(6):707-710. |
CHEN J B, YUAN X.Research on the decorrelated pseudo-range approach for use in the tightly-coupled GPS/SINS integration system[J].Acta Aeronautica et Astronautica Sinica,1995,16(6):707-710 (in Chinese). | |
11 | 董毅, 王鼎杰, 吴杰. 载波相位时间差分辅助的SINS/GNSS紧组合导航方法[J]. 中国惯性技术学报, 2021, 29(4): 451-458. |
DONG Y, WANG D J, WU J. MEMS-based SINS/GNSS tightly-coupled navigation aided by time-differenced carrier-phase measurements[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 451-458 (in Chinese). | |
12 | ALI J, MIRZA M B. Performance comparison among some nonlinear filters for a low cost SINS/GPS integrated solution[J]. Nonlinear Dynamics, 2010, 61(3): 491-502. |
13 | WILLI D, ROTHACHER M. GNSS attitude determination with non-synchronized receivers and short baselines onboard a spacecraft[J]. GPS Solutions, 2017, 21(4): 1605-1617. |
14 | 张丰兆, 刘瑞华, 倪育德, 等. 北斗卫星导航系统动态定位精度测试与分析[J]. 全球定位系统, 2018, 43(1): 43-48. |
ZHANG F Z, LIU R H, NI Y D, et al. Dynamic positioning accuracy test and analysis of BeiDou satellite navigation system[J]. GNSS World of China, 2018, 43(1): 43-48 (in Chinese). | |
15 | YAMAGUCHI S, TANAKA T. GPS Standard Positioning using Kalman filter[C]∥2006 SICE-ICASE International Joint Conference. Piscataway: IEEE Press, 2007: 1351-1354. |
16 | HAN S L, WANG J L. Integrated GPS/INS navigation system with dual-rate Kalman Filter[J]. GPS Solutions, 2012, 16(3): 389-404. |
17 | 李倩. GPS/INS组合导航系统研究及实现[D]. 上海: 上海交通大学, 2010: 42-51. |
LI Q. Research on integrated GPS/INS system and realization[D]. Shanghai: Shanghai Jiao Tong University, 2010: 42-51 (in Chinese). | |
18 | 周先林. GNSS/INS组合导航性能改善技术研究[D]. 北京: 中国科学院大学, 2020: 15-26. |
ZHOU X L. Research on performance improvement technology of GNSS/INS integrated navigation[D]. Beijing: University of Chinese Academy of Sciences, 2020: 15-26 (in Chinese). | |
19 | 谢兰天, 叶世榕, 胡楠楠. 基于单频伪距、伪距率全球定位系统/惯性导航系统紧组合导航系统[J]. 科学技术与工程, 2017, 17(35): 341-346. |
XIE L T, YE S R, HU N N. Tightly GPS/INS integrated navigation system based on single frequency pseudo-range and its rate[J]. Science Technology and Engineering, 2017, 17(35): 341-346 (in Chinese). | |
20 | 鲁郁. 北斗/GPS双模软件接收机原理与实现技术[M]. 北京: 电子工业出版社, 2016: 236-253. |
LU Y. Principle and implementation technology of Beidou/GPS dual-mode software receiver[M]. Beijing: Publishing House of Electronics Industry, 2016: 236-253 (in Chinese). | |
21 | 陈新. 各种GPS选星方法的综合分析[J]. 测绘科技动态, 1988, 13(3): 7-13. |
CHEN X. Review of the methods of selecting the optimal observable satellites for GPS[J]. Science of Surveying and Mapping, 1988, 13(3): 7-13 (in Chinese). | |
22 | 徐伟男. 微惯性/GPS组合导航系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 9-30. |
XU W N. Research on MEMS-MINS/GPS intergrated system[D]. Harbin: Harbin Institute of Technology, 2019: 9-30 (in Chinese). | |
23 | 孙晓炜. 基于MEMS的IMU/GPS紧组合导航方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 7-44. |
SUN X W. Research on MEMS-IMU/GPS tightly integrated navigation method[D]. Harbin: Harbin Engineering University, 2019: 7-44 (in Chinese). | |
24 | 陈灿辉, 张晓林, 霍航宇. 卫星导航系统中基于序贯处理的Kalman滤波[J]. 通信学报, 2012, 33(1): 174-181. |
CHEN C H, ZHANG X L, HUO H Y. Application of Kalman filtering based on sequential processing for satellite navigation[J]. Journal on Communications, 2012, 33(1): 174-181 (in Chinese). |
/
〈 |
|
〉 |