论文

空战格斗飞行机动数据库建立及应用

  • 马金毅 ,
  • 王灿 ,
  • 薛涛 ,
  • 艾剑良 ,
  • 董一群
展开
  • 复旦大学 航空航天系,上海 200433
.E-mail: yiqundong@fudan.edu.cn

收稿日期: 2022-05-09

  修回日期: 2022-05-30

  录用日期: 2022-06-20

  网络出版日期: 2022-06-24

基金资助

上海市青年科技英才扬帆计划(20YF1402500);上海市自然科学基金(22ZR1404500)

Development and illustrative applications of an air combat engagement database

  • Jinyi MA ,
  • Can WANG ,
  • Tao XUE ,
  • Jianliang AI ,
  • Yiqun DONG
Expand
  • Department of Aeronautics and Astronautics,Fudan University,Shanghai 200433,China

Received date: 2022-05-09

  Revised date: 2022-05-30

  Accepted date: 2022-06-20

  Online published: 2022-06-24

Supported by

Shanghai Sailing Program(20YF1402500);Natural Science Foundation of Shanghai(22ZR1404500)

摘要

空战格斗任务面临环境高复杂性、博弈强对抗性、响应高实时性、信息不完整性、边界不确定性等多项挑战。为此,已建立人类飞行员空战格斗飞行机动数据库ACED(Air Combat Engagement Database),系统采集人类优秀飞行员空战格斗飞行机动数据。基于该数据库,首先分析了空战格斗飞行机动方程,提出应重点分析飞行员在空战任务中的滚转角及法向过载决策指令;研究确定了近距空战格斗任务中的人类飞行员飞行机动决策时间窗,并采用能量谱分析方法确定了飞行员在近距空战格斗飞行机动中的滚转角决策频率;针对采用航炮作为主武器的近距空战格斗任务,研究了近距空战格斗敌机轨迹预测算法。相关方法可有效预测航炮炮弹生命周期内的敌机未来轨迹,有力支撑了航炮自动火控算法的研发,助力在相关空战竞赛中取得优异成绩。本文系列应用示例验证了已建立的空战格斗飞行机动数据库的有效性。

本文引用格式

马金毅 , 王灿 , 薛涛 , 艾剑良 , 董一群 . 空战格斗飞行机动数据库建立及应用[J]. 航空学报, 2023 , 44(S1) : 727538 -727538 . DOI: 10.7527/S1000-6893.2022.27538

Abstract

The main challenges in autonomous air combat mission include complex environment, strong gaming, fast dynamics, insufficient information, and uncertain boundaries. Nowadays, artificial intelligence (especially human-machine collaborative intelligence) has provided a good opportunity for addressing these challenges. We thus constructed an Air Combat Engagement Database (ACED). The ACED database is currently focused on Within-Visual-Range (WVR) air combat, which allocates the flight states and controls of experienced human pilots in WVR air combat missions. Based on this database, we first investigate the flight dynamics in air combat missions, and pro-pose that we should primarily analyze the roll angle and vertical load factor for researching the human pilot decision-making. The time window of pilot decision-making in WVR air combat is also studied, and the frequency of pilots maneuvering decision-making is analyzed by energy spectrum method. Moreover, the enemy aircraft trajectory prediction algorithm in WVR air combat is studied, the optimal key parameters of the algorithm are obtained for the trajectory prediction of different types of enemy aircraft. These illustrative applications verify the database established in this paper.

参考文献

1 BURGIN G H, OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat. Volume 2: Program description: NASA CR 2583[R]. Washington D. C.: NASA, 1975.
2 BURGIN G H, OWENS A J. An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat. Volume 1: General description: NASA CR 2582[R]. Washington D. C.: NASA, 1975.
3 BURGIN G H, EGGLESTON D M. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack: NASA CR 145004[R]. Washington D. C.: NASA, 1976.
4 HANKINS III WW. Computer-automated opponent for manned air-to-air combat simulations: NASA TP-1518[R]. Washington D. C.: NASA, 1979.
5 GOODRICH K H, MCMANUS J W. Development of a tactical guidance research and evaluation system (TGRES)[C]∥Flight Simulation Technologies Conference and Exhibit. Reston: AIAA, 1989: 3312.
6 GOODRICH K H, MCMANUS J W. An integrated environment for tactical guidance research and evaluation[C]∥Orbital Debris Conference: Technical Issues andFuture Directions. Reston: AIAA, 1990: 1287.
7 GOODRICH K H. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation: NASA TM-4440[R]. Washington D. C.: NASA, 1993.
8 BATTERSON J G, MORELLI E A. Parameter identification flight test maneuvers for closed loop modeling of the F-18 High Alpha Research Vehicle (HARV): NASACR-198269[R]. Washington D. C.: NASA, 1996.
9 ILIFF K W, WANG K C. Flight-determined subsonic longitu-dinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with thrust vectoring: NASA/TP-97-206539[R]. Washington D. C.: NASA, 1997.
10 AUSTIN F, CARBONE G, FALCO M, et al. Game theory for automated maneuvering during air-to-air combat[J]. Journal of Guidance, Control, and Dynamics199013(6): 1143-1149.
11 徐光达, 吕超, 王光辉, 等. 基于双矩阵对策的UCAV空战自主机动决策研究[J]. 舰船电子工程201737(11): 24-28, 39.
  XU G D, LV C, WANG G H, et al. Research on UCAV autonomous air combat maneuvering decision-making based on Bi-matrix game[J]. Ship Electronic Engineering201737(11): 24-28, 39 (in Chinese).
12 MA Y F, MA X L, SONG X. A case study on air combat decision using approximated dynamic programming[J]. Mathematical Problems in Engineering20142014: 1-10.
13 MCGREW J S, HOW J P, WILLIAMS B, et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics201033(5): 1641-1654.
14 VIRTANEN K, RAIVIO T, HAMALAINEN R P. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics200427(4): 665-677.
15 VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance, Control, and Dynamics200629(5): 1080-1091.
16 JOSEPH T. AI claims “Flawless Victory” going undefeated in digital dogfight with human fighter pilot[EB/OL]. [2023-03-10]. .
17 DONG Y Q, AI J L. Trial input method and own-aircraft state prediction in autonomous air combat[J]. Journal of Aircraft201249(3): 947-954.
18 DONG Y Q, AI J L. Maneuvering strategy and own aircraft movement prediction in trial input method: Low angle of attack[C]∥Infotech@Aerospace 2012. Reston: AIAA, 2012: 2594.
19 DONG Y Q, HUANG J, AI J L. Visual perception-based target aircraft movement prediction for autonomous air combat[J]. Journal of Aircraft201452(2): 538-552.
20 DONG Y Q. Deep learning-based opponent aircraft attitude detection in autonomous air combat[J]. Journal of Aerospace Information Systems201916(4): 162-167.
21 薄涛. 格斗空战行为建模技术研究[D]. 长沙: 国防科学技术大学,2002.
  BO T. Research on human behavior representation of fighter dogfight combat[D]. Changsha: College of Mechatronic Engineering and Automation, National University of Defense Technology, 2002 (in Chinese).
22 徐安, 高春庆, 寇英信, 等. 基于BFM方法的1vs1近距自主空战决策[J]. 系统工程与电子技术202042(11): 2513-2519.
  XU A, GAO C Q, KOU Y X, et al. Autonomous air combat decision of 1vs1 based on BFM method[J]. Systems Engineering and Electronics202042(11): 2513-2519 (in Chinese).
23 陈斌, 王江, 王阳. 战斗机嵌入式训练系统中的智能虚拟陪练[J]. 航空学报202041(6): 523467.
  CHEN B, WANG J, WANG Y. Intelligent virtual training partner in embedded training system of fighter[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523467 (in Chinese).
24 董一群, 艾剑良. 自主空战技术中的机动决策: 进展与展望[J]. 航空学报202041(S2): 724264.
  DONG Y Q, AI J L. Decision making in autonomous air combat: Review and prospects[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724264 (in Chinese)
25 DONG Y Q, AI J L, LIU J Q. Guidance and control for own aircraft in the autonomous air combat: a historical review and future prospects[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2019233(16): 5943-5991.
26 上电所举办首届智能空战竞赛[EB/OL]. [2023-03-10]. .
  First Intelligent Aerial Combat Competition held by the China Aviation Radio Electronics Research Institute [EB/OL]. [2023-03-10]. ."
27 “智慧协同, 决战长空” 2021年智能空战竞赛决赛在中国航空无线电电子研究所成功举办[EB/OL]. [2022-06-01]..
  The 2021 Intelligent Air Combat Competition, Collaboration Wisdom, Battle for the Sky, was successfully held at the China Aeronautical Radio Electronics Research Institute [EB/OL]. [2022-06-01]. (in Chinese).
28 DONG Y Q, ZHONG Y X, YU W B, et al. Mcity data collection for automated vehicles study[DB/OL]. preprint arXiv: , 2019.
29 薛涛, 马金毅, 温炯然, 等. 视距内空战飞行机动数据采集及分析[C]∥第40届中国控制会议论文集 (15). 上海: 中国自动化学会控制理论专业委员会, 中国自动化学会, 中国系统工程学会, 2021: 716-721.
  XUE T, MA J Y, WEN J R, et al. Within-visual-range Air Combat Engagement Database of Human Pilots[C]∥Proceedings of the 40th China Control Conference (15). Shanghai: nical Committee on Control Theory, Chinese Association of Automation, Chinese Association of Automation, Systems Engineering Society of China, 2021: 716-721 (in Chinese).
30 DONG Y Q. Implementing Deep Learning for comprehensive aircraft icing and actuator/sensor fault detection/identification[J]. Engineering Applications of Artificial Intelligence201983: 28-44.
31 DONG Y Q. An application of Deep Neural Networks to the in-flight parameter identification for detection and characterization of aircraft icing[J]. Aerospace Science and Technology201877: 34-49.
32 KELKAR S S, GRIGSBY L L, LANGSNER J. An extension of parseval’s theorem and its use in calculating transient energy in the frequency domain[J]. IEEE Transactions on Industrial Electronics1983, IE-30(1): 42-45.
文章导航

/