综述

高超声速飞行器强度技术的现状、挑战与发展趋势

  • 孙聪
展开
  • 中国航空研究院, 北京 100029

收稿日期: 2022-06-07

  修回日期: 2022-06-20

  网络出版日期: 2022-06-17

Development status, challenges and trends of strength technology for hypersonic vehicles

  • SUN Cong
Expand
  • Chinese Aeronautical Establishment, Beijing 100029, China

Received date: 2022-06-07

  Revised date: 2022-06-20

  Online published: 2022-06-17

摘要

高超声速飞行器作为一种前沿科技武器装备,对国家安全和利益具有重要战略作用,目前已成为航空航天领域的研究热点,在世界范围内的竞争态势日趋激烈。先进材料与结构设计是支撑高超声速飞行器研制的基础关键技术,极端严酷服役环境下材料与结构的强度问题依然是制约该类飞行器研制的瓶颈。本文回顾了过去几十年来高超声速飞行器领域的结构强度问题和演化特点,结合当前型号发展需求与技术发展趋势,剖析了当前结构强度技术在支撑高超声速飞行器研制方面的现状与短板,探讨了未来该领域内强度问题将呈现出的新需求、新特点及新方法。总结提出了未来高超声速飞行器结构强度领域的前沿发展方向。

本文引用格式

孙聪 . 高超声速飞行器强度技术的现状、挑战与发展趋势[J]. 航空学报, 2022 , 43(6) : 527590 -527590 . DOI: 10.7527/S1000-6893.2022.27590

Abstract

As a type of hi-tech weapon, hypersonic vehicle plays an important strategic role in national security and benefits. It has now become a research hotspot in the field of aerospace, and the competition is becoming increasingly fierce all over the world. Advanced material and structure design is a basic key technology to support the development of hypersonic vehicle. The strength of materials and structures in extremely severe service environments is still a key issue restricting the development of this type of aircraft. This paper reviews the structure strength problems and evolution characteristics in the field of hypersonic vehicles in the past few decades. Combined with the current vehicle model development demand and technology development trend, this paper analyzes the current situation and shortcomings of structure strength technology in supporting the development of hypersonic vehicles and discusses the new requirements, new characteristics and new methods of strength problems in this field in the future. Finally, the future development direction in the field of hypersonic vehicle structure strength is proposed after summarization.

参考文献

[1] 陈冰, 郑勇, 章后甜,等.临近空间高超声速飞行器导航技术发展综述[J].飞航导弹, 2021, 12(12):57-62,68. CHEN B, ZHENG Y, ZHANG H T, et al. Review on the development of near space hypersonic vehicle navigation technology[J]. Aerodynamic Missile Journal, 2021, 12(12):57-62,68(in Chinese).
[2] 蔡亚梅, 汪立萍. 美国的高超声速飞行器发展计划及关键技术分析[J]. 航天制造技术, 2010(6):4-7. CAI Y M, WANG L P. Hypersonic programs in USA and key technologies analysis[J]. Aerospace Manufacturing Technology, 2010(6):4-7(in Chinese).
[3] 牛文, 车易. DARPA完成HTV-2飞行器第二次试飞[J]. 飞航导弹, 2011(9):9. NIU W, CHE Y. DARPA completes the second test flight of HTV-2 aircraft[J]. Aerodynamic Missile Journal, 2011(9):9(in Chinese).
[4] 王骥飞. 高超声速飞行器气动外形一体化设计方法研究[D]. 西安:西北工业大学, 2018. WANG J F. Research on integration design methodology of aerodynamic shape for hypersonic aircrafts[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese).
[5] MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators-Overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3-9):619-630.
[6] KAZMAR R. Airbreathing hypersonic propulsion at Pratt & Whitney-overview[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA,2005:3256.
[7] PARKS S, WALDMAN B. Flight testing hypersonic vehicles-The X-30 and beyond[C]//2nd International Aerospace Planes Conference. Reston:AIAA, 1990:5229.
[8] MURPHY K J, NOWAK R J, THOMPSON R A, et al. X-33 hypersonic aerodynamic characteristics[J]. Journal of Spacecraft and Rockets, 2001, 38(5):670-683.
[9] BERRY S A, HORVATH T J, HOLLIS B R, et al. X-33 hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2001, 38(5):646-657.
[10] 王蒙, 张进, 尚绍华. X-43A飞行器的设计与制造[J]. 飞航导弹, 2007(6):24-31. WANG M, ZHANG J, SHANG S H. Design and manufacture of X-43A aircraft[J]. Winged Missiles Journal, 2007(6):24-31(in Chinese).
[11] BAHM C, BAUMANN E, MARTIN J, et al. The X-43A hyper-X Mach 7 flight 2 guidance, navigation, and control overview and flight test results[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005:3275.
[12] HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008:2540.
[13] 魏毅寅, 张冬青, 叶蕾, 等. 美国X-51A飞行器完成首次动力飞行试验[J]. 飞航导弹, 2010(6):2-7, 97, 99. WEI Y Y, ZHANG D Q, YE L, et al. US X51-A aircraft completes the first power flight test[J]. Aerodynamic Missile Journal, 2010(6):2-7, 97, 99(in Chinese).
[14] 李益翔. 美国高超声速飞行器发展历程研究[D]. 哈尔滨:哈尔滨工业大学, 2016. LI Y X. Research on the development history of US hypersonic aircrafts[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).
[15] WALKER S, SHERK J, SHELL D, et al. The DARPA/AF falcon program:The hypersonic technology vehicle #2(HTV-2) flight demonstration phase[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008.
[16] 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹, 2013(6):7-13. ZHEN H P, JIANG C W. Overview of hypersonic technology validation vehicle HTV-2[J]. Aerodynamic Missile Journal, 2013(6):7-13(in Chinese).
[17] 吕琳琳, 王慧. 俄罗斯Yu-71高超声速助推滑翔飞行器[J]. 现代军事, 2015(11):76-80. LYU L L, WANG H. Russian Yu-71 hypersonic boost-glide vehicle[J]. Conmilit, 2015(11):76-80(in Chinese).
[18] 刘薇, 龚海华. 国外高超声速飞行器发展历程综述[J]. 飞航导弹, 2020(3):20-27, 59. LIU W, GONG H H. Review of hypersonic vehicle development abroad[J]. Aerodynamic Missile Journal, 2020(3):20-27, 59(in Chinese).
[19] 姜鹏, 匡宇, 谢小平, 等. 国外高超声速飞行器研究现状及发展趋势[J]. 飞航导弹, 2017(7):19-24. JIANG P, KUANG Y, XIE X P, et al. Research status and development trend of hypersonic vehicle abroad[J]. Aerodynamic Missile Journal, 2017(7):19-24(in Chinese).
[20] RAKOW J F, WAAS A M. Thermal buckling of metal foam sandwich panels for convective thermal protection systems[J]. Journal of Spacecraft and Rockets, 2005, 42(5):832-844.
[21] TZONG G, JACOBS R, LIGUORE S. Air vehicle integration and technology research (aviatr) task order 0015:Predictive capability for hypersonic structural response and life prediction:Phase 1-identification of knowledge gaps, volume 1:Nonproprietary version[R]. Chicago:The Boeing Company, 2010.
[22] 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京:科学出版社, 2012:12-167. CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing:Science Press, 2012:12-167(in Chinese).
[23] 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1):47-56. YANG Y Z, YANG J L, FANG D N. Research progress on the thermal protection materials and structures in hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1):47-56(in Chinese).
[24] 王璐, 王友利. 高超声速飞行器热防护技术研究进展和趋势分析[J]. 宇航材料工艺, 2016, 46(1):1-6. WANG L, WANG Y L. Research progress and trend analysis of hypersonic vehicle thermal protection technology[J]. Aerospace Materials & Technology, 2016, 46(1):1-6(in Chinese).
[25] GLASS D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008.
[26] SAWYER J W, HODGE J, MOORE B, et al. Aerothermal test of thermal protection systems for v33 reusable launch vehicle[C]//AIP Conference Proceedings, 1999, 458(1):1087-1100.
[27] 陈新. 基于石英灯阵列的大梯度变化热环境模拟试验设计方法[D]. 哈尔滨:哈尔滨工业大学, 2021. CHEN X. Experiment design method for large gradient thermal environment employing quartz lamp array[D]. Harbin:Harbin Institute of Technology, 2021(in Chinese).
[28] 孟松鹤, 杨强, 霍施宇, 等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10):1295-1302. MENG S H, YANG Q, HUO S Y, et al. State-of-arts and trend of integrated thermal protection systems[J]. Journal of Astronautics, 2013, 34(10):1295-1302(in Chinese).
[29] BAPANAPALLI S, MARTINEZ O, GOGU C, et al. (student paper) analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2006:1942.
[30] WEI K, HE R J, CHENG X M, et al. A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications[J]. Materials & Design, 2015, 66:552-556.
[31] ZHANG J J, YIN J X, MA S X, et al. Experimental and numerical studies of the thermal performance of a metallic lattice structure filled with phase-change material[J]. Journal of Energy Engineering, 2017, 143(5):1-10.
[32] GRADY J, ROBINSON C.CMC/EBC research at NASA glenn in 2020:Recent progress and plans[C]//International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2020), 2020.
[33] 陈波. 三维编织C/C复合材料高温力学行为及寿命预测模型研究[D]. 南京:南京航空航天大学, 2018. CHEN B. Research on mechanical behavior and fatigue prediction method of 3D braided carbon/carbon composites at elevated temperature[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
[34] CULLER A J. Coupled fluid-thermal-structural modeling and analysis of hypersonic flight vehicle structures[D]. Columbus:The Ohio State University, 2010.
[35] LIU L, DAI G Y, ZENG L, et al. Experimental model design and preliminary numerical verification of fluid-thermal-structural coupling problem[J]. AIAA Journal, 2019, 57(4):1715-1724.
[36] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1):311-324. DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324(in Chinese).
[37] MILLER B, CROWELL A, MCNAMARA J. Modeling and analysis of shock impingements on thermo-mechanically compliant surface panels[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.Reston:AIAA, 2012:1548.
[38] 周印佳, 孟松鹤, 解维华, 等. 高超声速飞行器热环境与结构传热的多场耦合数值研究[J]. 航空学报, 2016, 37(9):2739-2748. ZHOU Y J, MENG S H, XIE W H, et al. Multi-field coupling numerical analysis of aerothermal environment and structural heat transfer of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2739-2748(in Chinese).
[39] 孙学文. 高超声速气动热预测及热防护材料/结构响应研究[D]. 北京:北京科技大学, 2020. SUN X W. Prediction of the aerodynamic heating and the response of thermal protection material/structure in hypersonic[D]. Beijing:University of Science and Technology Beijing, 2020(in Chinese).
[40] 谭光辉, 李秋彦, 邓俊. 热环境下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(S1):32-37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(Sup 1):32-37(in Chinese).
[41] 吴志刚, 惠俊鹏, 杨超. 高超声速下翼面的热颤振工程分析[J]. 北京航空航天大学学报, 2005, 31(3):270-273. WU Z G, HUI J P, YANG C. Hypersonic aerothermoelastic analysis of wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3):270-273(in Chinese).
[42] BEHNKE M, SHARMA A, PRZEKOP A, et al. Thermal-acoustic analysis of a metallic integrated thermal protection system structure[C]//51 st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2010.
[43] MONTGOMERY J. Modeling of aircraft structural-acoustic response to complex sources using coupled FEM/BEM analyses[C]//10th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2004.
[44] GORDON R, HOLLKAMP J. Reduced-order models for acoustic response prediction[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2011.
[45] LIGUORE S L, PITT D M, WHITE E V. Air vehicle technology integration program (AVTIP). delivery order 0086:Applied nonlinear low order response prediction methods evaluation[R]. Chicago:The Boeing Company, 2009.
[46] LIGUORE S L, PITT D M, THOMAS M J, et al.Air vehicle integration and technology research (AVIATR). Delivery order 0013:Nonlinear, low-order/reduced-order modeling applications and demonstration:AFRL-RB-WP-TR-2011-3102[R]. Chicago:The Boeing Company, 2011.
[47] LIGUORE S, THOMAS M, PITT D. Application and demonstration of nonlinear reduced order modeling (NLROM) for thermal/acoustic response[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2012.
[48] ZUCHOWSKI B. Air vehicle integration and technology research (aviatr). delivery order 0023:Predictive capability for hypersonic structural response and life prediction:Phase 2-detailed design of hypersonic cruise vehicle hot-structure[R]. Lockheed Martin Aeronautics Co Palmdale Ca, 2012.
[49] 邹学锋, 郭定文, 张昕, 等. 声/热/静联合载荷下钛板结构响应特性研究[J]. 推进技术, 2019, 40(5):1136-1143. ZOU X F, GUO D W, ZHANG X, et al. Study on response characteristcs of titanium panel under combined thermal/acoustic/static loadings[J]. Journal of Propulsion Technology, 2019, 40(5):1136-1143(in Chinese).
[50] 张正平. 飞行器薄壁结构热噪声响应及动强度研究[J]. 强度与环境, 2019, 46(1):1-7. ZHANG Z P. Dynamic response and strength of aerocraft thin-panel under thermal-acoustic loads[J]. Structure & Environment Engineering, 2019, 46(1):1-7(in Chinese).
[51] 李跃明, 耿谦. 热结构的声振特性[M]. 北京:科学出版社, 2021. LI Y M, GENG Q. Acoustic vibration characteristics of thermal structures[M]. Beijing:Science Press, 2021(in Chinese).
[52] 沙云东, 艾思泽, 张家铭, 等. 热流环境下薄壁结构随机振动响应计算与疲劳分析[J]. 航空动力学报, 2020, 35(7):1402-1412. SHA Y D, AI S Z, ZHANG J M, et al. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment[J]. Journal of Aerospace Power, 2020, 35(7):1402-1412(in Chinese).
[53] 杨智春, 刘丽媛, 王晓晨. 高超声速飞行器受热壁板的气动弹性声振分析[J]. 航空学报, 2016, 37(12):3578-3587. YANG Z C, LIU L Y, WANG X C. Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3578-3587(in Chinese).
[54] 邹学锋, 潘凯, 燕群, 等. 多场耦合环境下高超声速飞行器结构动强度问题综述[J]. 航空科学技术, 2020, 31(12):3-15. ZOU X F, PAN K, YAN Q, et al. Overview of dynamic strength of hypersonic vehicle structure in multi-field coupling environment[J]. Aeronautical Science & Technology, 2020, 31(12):3-15(in Chinese).
[55] 王乐善, 巨亚堂, 吴振强, 等. 辐射加热方法在结构热试验中的作用与地位[J]. 强度与环境, 2010, 37(5):58-64. WANG L S, JU Y T, WU Z Q, et al. Status and significance of radiation heating method in thermal-structural testing[J]. Structure & Environment Engineering, 2010, 37(5):58-64(in Chinese).
[56] 王建军, 王智勇, 栾叶君, 等. 高超声速飞行器热结构力热氧试验技术概述[J]. 强度与环境, 2018, 45(2):59-64. WANG J J, WANG Z Y, LUAN Y J, et al. A review of mechanical-thermal-oxygen composite test technology for hot structure of hypersonic aircraft[J]. Structure & Environment Engineering, 2018, 45(2):59-64(in Chinese).
[57] 邹学锋, 郭定文, 潘凯, 等. 综合载荷环境下高超声速飞行器结构多场联合强度试验技术[J]. 航空学报, 2018, 39(12):222326. ZOU X F, GUO D W, PAN K, et al. Test technique for multi-load combined strength of hypersonic vehicle structure under complex loading environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):222326(in Chinese).
[58] ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G. Thermal shock resistance of ZrB2 and ZrB2-30% SiC[J]. Materials Chemistry and Physics, 2008, 112(1):140-145.
[59] OPEKA M M, TALMY I G, WUCHINA E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 1999, 19(13-14):2405-2414.
[60] WUCHINA E, OPEKA M, CAUSEY S, et al. Designing for ultrahigh-temperature applications:the mechanical and thermal properties of HfB2, HfCx, HfNx and Hf(N)[J]. Journal of Materials Science, 2004, 39(19):5939-5949.
[61] RICHIE C, RISH F. Strength integrity of the acreage thermal protection system for the Space Shuttle Orbiter[C]//23rd Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 1982.
[62] 李志强, 吴振强, 魏龙, 等. 热防护系统结构完整性试验评估技术研究进展[J]. 强度与环境, 2020, 47(5):19-27. LI Z Q, WU Z Q, WEI L, et al. Advances of structural integrity test evaluation techniques for thermal protection systems[J]. Structure & Environment Engineering, 2020, 47(5):19-27(in Chinese).
[63] STEPHENS C A, HUDSON L D, PIAZZA A. Overview of an advanced hypersonic structural concept test program:NASA-2008-561[R].Washington,D.C.:NASA,2008.
[64] SPIVEY N D. High-temperature modal survey of a hot-structure control surface:NASA/TM-2011-215965[R]. Washington,D.C.:NASA,2011.
[65] HUDSON L D, STEPHENS C A.X-37 C/Si C ruddervator subcomponent test program:DFRC-1069[R]. Washington,D.C.:NASA,1992.
[66] DEANGELIS V M, ANDERSON K F. Thermal-structural test facilities at NASA Dryden:NASA-TM-104249[R]. Washington,D.C.:NASA, 1992.
[67] WANG L L, LIANG J, FANG G D, et al. Effects of strain rate and temperature on compressive strength and fragment size of ZrB2-SiC-graphite composites[J]. Ceramics International, 2014, 40(4):5255-5261.
[68] 武保华, 刘春立, 张涛, 等. 碳/碳复合材料超高温力学性能测试研究[J]. 宇航材料工艺, 2001, 31(6):67-71, 76. WU B H, LIU C L, ZHANG T, et al. Research on mechanical properties test of C/C composites at ultra high temperature[J]. Aerospace Materials & Technology, 2001, 31(6):67-71, 76(in Chinese).
[69] 韩红梅, 李贺军, 李克智, 等. 高温对碳/碳复合材料性能影响的研究[J]. 西北工业大学学报, 2003, 21(3):352-355. HAN H M, LI H J, LI K Z, et al. Effect of high temperature on mechanical behavior of 3D braided C/C composites[J]. Journal of Northwestern Polytechnical University, 2003, 21(3):352-355(in Chinese).
[70] GUO W M, YANG Z G, ZHANG G J. High-temperature deformation of ZrB2 ceramics with WC additive in four-point bending[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(6):705-709.
[71] ZHANG R B, CHENG X M, FANG D N, et al. Ultra-high-temperature tensile properties and fracture behavior of ZrB2-based ceramics in air above 1500℃[J]. Materials & Design (1980-2015), 2013, 52:17-22.
[72] 王玲玲. ZrB2基超高温陶瓷高温本构关系及断裂行为研究[D]. 哈尔滨:哈尔滨工业大学, 2015. WANG L L. High temperature constitutive relationship and fracture behavior of ZrB2-based ultra high temperature ceramic[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese).
[73] 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热-振联合试验研究[J]. 航空学报, 2012, 33(9):1633-1642. WU D F, ZHAO S G, PAN B, et al. Research on thermal-vibration joint test for wing structure of high-speed cruise missile[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1633-1642(in Chinese).
[74] 吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报, 2013, 45(4):598-605. WU D F, ZHAO S G, PAN B, et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4):598-605(in Chinese).
[75] 李晓东, 杨文岐, 刘浩. 基于纯随机激励的热模态试验技术研究[J]. 强度与环境, 2015, 42(2):52-56. LI X D, YANG W Q, LIU H. The study of thermo-modal test technique based on true-random excitation[J]. Structure & Environment Engineering, 2015, 42(2):52-56(in Chinese).
文章导航

/