具有边界保护性能的直升机飞-发一体化控制律
收稿日期: 2022-05-11
修回日期: 2022-06-01
录用日期: 2022-06-09
网络出版日期: 2022-06-17
基金资助
航空科学基金(20180753005)
Helicopter integrated flight⁃engine control with envelope protections
Received date: 2022-05-11
Revised date: 2022-06-01
Accepted date: 2022-06-09
Online published: 2022-06-17
Supported by
Aeronautical Science Foundation of China(20180753005)
针对直升机飞-发一体化控制和边界保护控制问题,提出了一种基于投影算子的新型边界保护控制律设计方法,基于反馈控制概念设计了指令约束器,通过对控制指令进行修正,实现边界保护控制。基于UH-60直升机和T700涡轴发动机的参数,建立了直升机-传动机构-发动机综合系统的数学模型,采用动态逆和线性二次型调节器(LQR)控制理论设计了直升机飞-发一体化控制律,与基于投影算子的边界保护控制模块进行整合形成完整控制律。采用数值仿真检验了控制律的控制性能,仿真结果表明本文设计的控制律能够实现直升机和发动机的综合控制,在高度、滚转、俯仰、偏航通道实现显模型跟踪控制性能的同时,实现了高度变化率、姿态角、姿态角速率和发动机动力涡轮转速边界保护控制要求。
杨庶 . 具有边界保护性能的直升机飞-发一体化控制律[J]. 航空学报, 2023 , 44(S1) : 727560 -727560 . DOI: 10.7527/S1000-6893.2022.27560
A novel envelope protection control method is proposed in this work. Such a control method is designed based on concepts of projection operators and command governors, achieving envelope protections by modifying control commands. A mathematical model is developed for a helicopter-transmission-engine integrated system based on parameters of the UH-60 helicopter and the T700 turboshaft engine. An integrated flight-engine control law is designed based on dynamic inversion and LQR control theories, and integrated with the projection operator-based envelope protection module. Numerical simulations are conducted to examine the performance of the control law. Simulation results indicate that the integrated helicopter-engine control law designed in this work achieves explicit modeling following performance in altitude, roll, pitch, and yaw control channels, and ensures envelope protections for altitude rates, fuselage attitudes, fuselage attitude rates, and engine power shaft speed.
1 | NGO T D, SULTAN C. Model predictive control for helicopter shipboard operations in the ship airwakes[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(3): 574-589. |
2 | MEHLING T, HALBE O, GASPARAC T, et al. Piloted simulation of helicopter shipboard recovery with visual and control augmentation[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 1136. |
3 | HOENCAMP A, LEE D, PAVEL M D, STAPERSMA D. Lessons learned from NH90 NFH helicopter-ship qualification testing across the entire Dutch fleet[C]∥AHS 70th Annual Forum. Fairfax: AHS, 2014: 1-13. |
4 | KIRBY C, KENNEDY Q, YANG J H. An analysis of helicopter pilot scan techniques while flying at low altitudes and high speed[C]∥AIAA Atmospheric Flight Mechanics (AFM) Conference. Reston: AIAA, 2013: 4690. |
5 | TAKAHASHI M D, WHALLEY M S, FLETCHER J W, et al. Development and flight testing of a flight control law for autonomous operations research on the RASCAL JUH-60A[J]. Journal of the American Helicopter Society, 2014, 59(3): 1-13. |
6 | TAKAHASHI M D, FUJIZAWA B T, LUSARDI J A, et al. Autonomous guidance and flight control on a partial-authority black hawk helicopter[C]∥ AIAA AVIATION 2020 FORUM. Reston: AIAA, 2020: 3286. |
7 | SCHERER S, CHAMBERLAIN L, SINGH S. Autonomous landing at unprepared sites by a full-scale helicopter[J]. Robotics and Autonomous Systems, 2012, 60(12): 1545-1562. |
8 | SINGH S, SCHERER S. Pushing the Envelope - Fast and safe landing by autonomous rotorcraft at unprepared sites[C]∥ AHS 69th Annual Forum. Fairfax: AHS, 2013: 1-5. |
9 | PADFIELD G D. Helicopter flight dynamics[M]. Oxford: Blackwell Publishing Ltd., 2007. |
10 | 宋招枘, 赵敬超, 杨文凤. 基于试飞分析的直升机动力系统边界保护控制方法[J]. 北京航空航天大学学报, 2023, 49(1): 100-105. |
SONG Z R, ZHAO J C, YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 100-105 (in Chinese). | |
11 | 王刚强. 无人直升机着陆过程边界保护控制技术研究[J]. 数字技术与应用, 2019, 37(6): 4-6. |
WANG G Q. Research on boundary protection control technology for unmanned helicopter landing process[J]. Digital Technology & Application, 2019, 37(6): 4-6 (in Chinese). | |
12 | 戴兴安, 陈燕云, 盛守照. 基于RBF和动态配平的高速直升机边界保护控制[J]. 电光与控制, 2019, 26(10): 38-42. |
DAI X A, CHEN Y Y, SHENG S Z. Envelope protection control for high-speed helicopter based on RBF and dynamic trimming[J]. Electronics Optics & Control, 2019, 26(10): 38-42 (in Chinese). | |
13 | 魏扬, 徐浩军, 薛源, 等. 基于神经网络自适应动态逆的结冰飞机飞行安全边界保护方法[J]. 航空学报, 2019, 40(5): 122488. |
WEI Y, XU H J, XUE Y, et al. Aircraft flight safety envelope protection under icing conditions based on adaptive neural network dynamic inversion[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122488 (in Chinese). | |
14 | 卫圆. 直升机/发动机一体化建模研究[D]. 南京: 南京航空航天大学, 2020: 1-69. |
WEI Y. Research on helicopter/engine integrated system design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 1-69 (in Chinese). | |
15 | 宁景涛. 变转速直升机/传动系统/发动机综合建模与控制研究[D]. 南京: 南京航空航天大学, 2016: 1-65. |
NING J T. Study on simulation and control of integrated helicopter/transmission/engine system with variable rotor speed[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 1-65 (in Chinese). | |
16 | 张海波, 叶飞, 李永进, 等. 直升机/发动机系统综合控制半物理仿真[J]. 航空动力学报, 2013, 28(7): 1650-1658. |
ZHANG H B, YE F, LI Y J, et al. Semi-physical simulation on integrated helicopter/engine control system[J]. Journal of Aerospace Power, 2013, 28(7): 1650-1658 (in Chinese). | |
17 | SIMON D, H?RKEG?RD O, L?FBERG J. Command governor approach to maneuver limiting in fighter aircraft[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(6): 1514-1527. |
18 | FAMULARO D, MARTINO D, MATTEI M. Constrained control strategies to improve safety and comfort on aircraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1782-1792. |
19 | GARONE E, NICOTRA M M. Explicit reference governor for constrained nonlinear systems[J]. IEEE Transactions on Automatic Control, 2016, 61(5): 1379-1384. |
20 | HOWLETT J J. UH-60A Black Hawk engineering simulation program: Volume I ? mathematical model: NASA-CR-166309[R]. Washington D. C.: NASA, 1981. |
21 | JEPSON D, MOFFITT R, HILZINGER K, BISSELL J. Analysis and correlation of test data from an advanced technology rotor System, NASA-CR-3714[R]. Washington D. C.: NASA, 1983. |
22 | PITT D M, PETERS D A. Theoretical prediction of dynamics inflow derivatives[J]. Vertica, 1981, 5(1): 21-34. |
23 | JOHNSON W. Rotorcraft aeromechanics[M]. Cambridge: Cambridge University Press, 2013 |
24 | BALLIN M G. A high fidelity real-time simulation of a small turboshaft engine, NASA-TM-100991[R]. Washington D. C.: NASA, 1988. |
25 | LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd edition. New York: Cambridge University Press, 2006. |
26 | ANDERSON B D O, MOORE J B. Optimal control: linear quadratic approach[M]. Englewood Cliffs: Prentice-Hall, 1990: 35-60. |
ANDERSON B D O, MOORE J B. Optimal control: linear quadratic approach[M]. Englewood Cliffs: Prentice-Hall, 1990: 35-60. | |
27 | POMET J B, PRALY L. Adaptive nonlinear regulation: estimation from the Lyapunov equation[J]. IEEE Transactions on Automatic Control, 1992, 37(6): 729-740. |
28 | KHALIL H K. Nonlinear Systems, 3rd ed [M]. Upper Saddle River: Prentice Hall, 2002: 174-180. |
29 | BALLIN M G. Validation of a real-time engineering simulation of the UH-60A helicopter, NASA-TM-88360[R]. Washington D. C.: NASA, 1987. |
/
〈 |
|
〉 |