基于Transformer模型的空战飞行器轨迹预测误差补偿方法
收稿日期: 2022-05-10
修回日期: 2022-05-22
录用日期: 2022-06-10
网络出版日期: 2022-06-17
基金资助
国家自然科学基金(62073267);航空科学基金(201905053001)
Transformer-based error compensation method for air combat aircraft trajectory prediction
Received date: 2022-05-10
Revised date: 2022-05-22
Accepted date: 2022-06-10
Online published: 2022-06-17
Supported by
National Natural Science Foundation of China(62073267);Aeronautical Science Foundation of China(201905053001)
空战过程中对目标飞行器轨迹的精准预测,能够大幅提升我机取得空中优势的能力。为此,针对现有的各类轨迹预测算法求解出的基准预测值,提出了一种通用性强、计算耗时短、精度提升高的基于Transformer模型的预测误差补偿(TFPEC)方法,以进一步提高轨迹预测结果的准确性。首先,在基准预测值的基础上,建立了基于Transformer的特征提取模型来处理目标飞行器的历史轨迹序列,得到轨迹特征矩阵;其次,利用多层感知机结构对特征矩阵进行回归计算,求解轨迹预测误差补偿值;然后,利用傅里叶变换将轨迹变换到频域进行模值分析,计算误差补偿系数;最后,对基准预测值、误差补偿值以及补偿系数进行综合计算,以获得最终的轨迹预测结果。为验证所提方法的有效性,结合了4种现有轨迹预测算法,在飞行员一对一格斗空战中所产生的数据集上进行了测试。仿真结果表明所提方法能够有效地提升轨迹预测结果的精度,适用于空战环境下的飞行器轨迹预测任务。
关键词: 空战轨迹预测; 序列特征提取; 误差补偿; Transformer; 傅里叶变换
张百川 , 毕文豪 , 张安 , 毛泽铭 , 杨咪 . 基于Transformer模型的空战飞行器轨迹预测误差补偿方法[J]. 航空学报, 2023 , 44(9) : 327413 -327413 . DOI: 10.7527/S1000-6893.2022.27413
Accurate prediction results of the target aircraft trajectory can greatly improve the ability of our aircraft to gain air superiority in the process of air combat. This paper proposes a Transformer-based Prediction Error Compensation (TFPEC) method to further improve the accuracy of the trajectory prediction results based on the benchmarks generated by mature trajectory prediction algorithms. Firstly, a Transformer-based feature extraction model is established to process the historical trajectory sequence of the target aircraft, so as to obtain the trajectory feature matrix. Secondly, the multi-layer perceptron structure is used to perform regression calculation of the feature matrix, so as to calculate the trajectory prediction error compensation value. Thirdly, the Fourier transform is used to transform the trajectory into the frequency domain for modulo analysis, and to calculate the error compensation coefficient. Finally, the benchmark, the error compensation value, and the compensation coefficient are comprehensively calculated to obtain the final prediction result. The proposed method is tested on the one-on-one data set generated by pilots. The simulation results show that compared with the four existing trajectory prediction algorithms, the proposed method can effectively improve the accuracy of trajectory prediction results, and is applicable for aircraft trajectory prediction tasks in the air combat environment.
1 | 张昊, 金琳乘, 王胜男. 基于OODA环的对地攻击流程半实物仿真验证方法[J]. 航空学报, 2021, 42(8): 525788. |
ZHANG H, JIN L C, WANG S N. Semi-physical simulation verification method of air-to-ground attacking process with OODA loop[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525788 (in Chinese). | |
2 | 蒲志强, 易建强, 刘振, 等. 知识和数据协同驱动的群体智能决策方法研究综述[J]. 自动化学报, 2022, 48(3): 627-643. |
PU Z Q, YI J Q, LIU Z, et al. Knowledge-based and data-driven integrating methodologies for collective intelligence decision making: A survey[J]. Acta Automatica Sinica, 2022, 48(3): 627-643 (in Chinese). | |
3 | 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报, 2020, 41(12): 324183. |
XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324183 (in Chinese). | |
4 | 张博伦, 周荻, 吴世凯. 临近空间高超声速飞行器机动模型及弹道预测[J]. 系统工程与电子技术, 2019, 41(9): 2072-2079. |
ZHANG B L, ZHOU D, WU S K. Maneuver model and trajectory prediction of near space hypersonic aircraft[J]. Systems Engineering and Electronics, 2019, 41(9): 2072-2079 (in Chinese). | |
5 | BARRATT S T, KOCHENDERFER M J, BOYD S P. Learning probabilistic trajectory models of aircraft in terminal airspace from position data[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3536-3545. |
6 | WIEST J, H?FFKEN M, KRE?EL U, et al. Probabilistic trajectory prediction with Gaussian mixture models[C]∥ 2012 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2012: 141-146. |
7 | 郑天宇, 姚郁, 贺风华. 基于可学习EKF的高超声速飞行器航迹估计[J]. 哈尔滨工业大学学报, 2020, 52(6): 160-170. |
ZHENG T Y, YAO Y, HE F H. Trajectory estimation of a hypersonic flight vehicle via L-EKF[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 160-170 (in Chinese). | |
8 | LI M, LU F, ZHANG H, et al. Predicting future locations of moving objects with deep fuzzy-LSTM networks[J]. Transportmetrica A Transport Science, 2020, 16(1): 119-136. |
9 | ZYNER A, WORRALL S, NEBOT E. Naturalistic driver intention and path prediction using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(4): 1584-1594. |
10 | 张宏鹏, 黄长强, 唐上钦, 等. 基于卷积神经网络的无人作战飞机飞行轨迹实时预测[J]. 兵工学报, 2020, 41(9): 1894-1903. |
ZHANG H P, HUANG C Q, TANG S Q, et al. CNN-based real-time prediction method of flight trajectory of unmanned combat aerial vehicle[J]. Acta Armamentarii, 2020, 41(9): 1894-1903 (in Chinese). | |
11 | MA Z M, YAO M F, HONG T, et al. Aircraft surface trajectory prediction method based on LSTM with attenuated memory window[J]. Journal of Physics: Conference Series, 2019, 1215(1): 012003. |
12 | 王德运, 陈奕青, 耿亮. 基于模态分解与误差修正策略的原油价格组合预测研究[J]. 南昌工程学院学报, 2022, 41(1): 22-31. |
WANG D Y, CHEN Y Q, GENG L. A novel hybrid model based on mode decomposition and error compensation strategy for crude oil price forecasting[J]. Journal of Nanchang Institute of Technology, 2022, 41(1): 22-31 (in Chinese). | |
13 | 王增平, 赵兵, 贾欣, 等. 基于差分分解和误差补偿的短期电力负荷预测方法[J]. 电网技术, 2021, 45(7): 2560-2568. |
WANG Z P, ZHAO B, JIA X, et al. Short-term power load forecasting method based on difference decomposition and error compensation[J]. Power System Technology, 2021, 45(7): 2560-2568 (in Chinese). | |
14 | LIU H, TIAN H Q, LI Y F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms[J]. Energy Conversion and Management, 2015, 100: 16-22. |
15 | 刘帅, 朱永利, 张科, 等. 基于误差修正ARMA-GARCH模型的短期风电功率预测[J]. 太阳能学报, 2020, 41(10): 268-275. |
LIU S, ZHU Y L, ZHANG K, et al. Short-term wind power forecasting based on error correction ARMA-GARCH model[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 268-275 (in Chinese). | |
16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010. |
17 | 周哲韬, 刘路, 宋晓, 等. 基于Transformer模型的滚动轴承剩余使用寿命预测方法[J/OL]. 北京航空航天大学学报, 1-17 [2021-08-28]. . |
ZHOU Z T, LIU L, SONG X, et al. Remaining useful life prediction method of rolling bearing based on Transformer model [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, 1-17 [2021-08-28]. (in Chinese). | |
18 | IMMAS A, DO N, ALAM MR. Real-time in situ prediction of ocean currents[J]. Ocean Engineering, 2021, 228: 108922. |
19 | 罗棕, 杜春, 陈浩, 等. 基于Transformer层次预测的多星应急观测任务规划方法[J]. 航空学报, 2021, 42(4): 524721. |
LUO Z, DU C, CHEN H, et al. Multi-satellite scheduling approach for emergency scenarios based on hierarchical forecasting with Transformer network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524721 (in Chinese). | |
20 | 乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报, 2018, 46(2): 418-423. |
QIAO S J, HAN N, ZHU X W, et al. A dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta Electronica Sinica, 2018, 46(2): 418-423 (in Chinese). | |
21 | ZHU Y, LIU J L, GUO C, et al. Prediction of battlefield target trajectory based on LSTM[C]∥2020 IEEE 16th International Conference on Control & Automation (ICCA). Piscataway: IEEE Press, 2020: 725-730. |
22 | XU X M, YANG R N, ZHANG T, et al. Trajectory prediction of target aircraft in air combat based on GA-OIF-Elman neural network[C]∥2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). Piscataway: IEEE Press, 2019: 108-113. |
/
〈 |
|
〉 |