电子电气工程与控制

航天器多约束姿态规划与控制:进展与展望

  • 胡庆雷 ,
  • 邵小东 ,
  • 杨昊旸 ,
  • 段超
展开
  • 1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100191;
    2. 北京航空航天大学 杭州创新研究院(余杭), 杭州 311100;
    3. 北京航空航天大学 航空科学与工程学院, 北京 100191

收稿日期: 2022-04-30

  修回日期: 2022-05-18

  网络出版日期: 2022-06-17

基金资助

国家重点研发计划(2021YFC2202600);国家自然科学基金(61960206011,62103027);北京市自然科学基金(JQ19017);中国博士后科学基金(2021M690300);空间智能控制技术重点实验室稳定支持项目(HTKJ2021KL502014);国防基础科研项目(JCKY2018203B022)

Spacecraft attitude planning and control under multiple constraints: Review and prospects

  • HU Qinglei ,
  • SHAO Xiaodong ,
  • YANG Haoyang ,
  • DUAN Chao
Expand
  • 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
    2. Beihang Hangzhou Innovation Institute (Yuhang), Beihang University, Hangzhou 310023, China;
    3. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2022-04-30

  Revised date: 2022-05-18

  Online published: 2022-06-17

Supported by

National Key Basic Research Program (2021YFC2202600);National Natural Science Foundation (61960206011, 62103027);Natural Science Foundation of Beijing (JQ19017);China Postdoctoral Science Foundation (2021M690300);Stable Supporting Fund of the Science and Technology on Space Intelligent Control Laboratory (HTKJ2021KL502014);National Defense Basic Scientific Research Program of China (JCKY2018203B022)

摘要

随着人类航天活动日趋频繁,空间任务已经向多样化、无人自主化等方向发展,以在轨服务与维护、编队飞行以及深空探测等为代表的新兴空间任务,近年来受到了各航天大国的持续关注与投入。高可靠、高精度、强自主的姿态规划与控制技术是保障航天器安全顺利实施这些空间任务的关键核心。然而,航天器在轨运行过程中面临的各类约束为姿态规划与控制算法设计带来了巨大挑战。本文首先对复杂约束进行分析与表征,而后从约束处理机制角度对现有的多约束姿态规划与控制方法进行分类,梳理各个方案的研究脉络、优缺点及部分代表性成果,并总结关键技术领域的研究现状和亟需解决的难题。最后,针对中国航天未来发展需求,展望了航天器多约束姿态规划与控制的发展方向。

本文引用格式

胡庆雷 , 邵小东 , 杨昊旸 , 段超 . 航天器多约束姿态规划与控制:进展与展望[J]. 航空学报, 2022 , 43(10) : 527351 -527351 . DOI: 10.7527/S1000-6893.2022.27351

Abstract

With the increasing frequency of human space activities, space missions are moving towards diversification and unmanned autonomy. In recent years, some emerging space missions, represented by on-orbit servicing, formation flight, and deep space exploration, have gained extensive attention and continued investment from major aerospace powers in the world. The attitude planning and control technology with high reliability, high precision and strong autonomy is core to ensuring that the spacecraft safely and successfully implements these space missions. However, multiple constraints encountered during the spacecraft on-orbit operation pose significant challenges to attitude planning and control algorithm design. In this paper, complex constraints are first analyzed and characterized. Then, the existing attitude planning and control methods are classified in terms of constraint processing mechanisms. After that, the research context and advantages and disadvantages of each method are sorted out, and some representative results are reviewed. Furthermore, the state of art and urgent challenges in critical research areas are summarized. Finally, considering the major demands of China's aerospace industry, the developing direction of spacecraft attitude planning and control under multiple constraints is discussed.

参考文献

[1] 徐广德, 武江凯, 苟仲秋, 等. 国外航天器高精度高稳定度高敏捷指向技术综述[J]. 航天器工程, 2017, 26(1):91-99. XU G D, WU J K, GOU Z Q, et al. High accuracy high stability and high agility pointing technology of spacecraft[J]. Spacecraft Engineering, 2017, 26(1):91-99(in Chinese).
[2] 吴树范, 王楠, 龚德仁. 引力波探测科学任务关键技术[J]. 深空探测学报, 2020, 7(2):118-127. WU S F, WANG N, GONG D R. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration, 2020, 7(2):118-127(in Chinese).
[3] 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用, 2019, 45(4):7-18. YUAN L, HUANG H. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application, 2019, 45(4):7-18(in Chinese).
[4] SHAO X D, HU Q L, SHI Y, et al. Data-driven immersion and invariance adaptive attitude control for rigid bodies with double-level state constraints[J]. IEEE Transactions on Control Systems Technology, 2022, 30(2):779-794.
[5] DONG H Y, ZHAO X W, YANG H Y. Reinforcement learning-based approximate optimal control for attitude reorientation under state constraints[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4):1664-1673.
[6] LEE U, MESBAHI M. Feedback control for spacecraft reorientation under attitude constraints via convex potentials[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):2578-2592.
[7] AYOUBI M A, HSIN J. Sun-avoidance slew planning with keep-out cone and actuator constraints[J]. Journal of Spacecraft and Rockets, 2020, 57(6):1175-1185.
[8] FABINSKY B. A survey of ground operations tools developed to plan and validate the pointing of space telescopes and the design for WISE[C]//Modeling, Systems Engineering, and Project Management for Astronomy II. Cradiff:SPIE, 2006:383-395.
[9] HABLANI H B. Attitude commands avoiding bright objects and maintaining communication with ground station[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):759-767.
[10] WIE B, LU J B. Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6):1372-1379.
[11] AKELLA M R, VALDIVIA A, KOTAMRAJU G R. Velocity-free attitude controllers subject to actuator magnitude and rate saturations[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4):659-666.
[12] WANG X W, WU G H, XING L N, et al. Agile earth observation satellite scheduling over 20 years:Formulations, methods, and future directions[J]. IEEE Systems Journal, 2021, 15(3):3881-3892.
[13] MARSH H, KARPENKO M, GONG Q. Energy constrained shortest-time maneuvers for reaction wheel satellites:AIAA-2016-5579[R]. Reston:AIAA, 2016.
[14] HU Q L, CHI B R, AKELLA M R. Anti-unwinding attitude control of spacecraft with forbidden pointing constraints[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(4):822-835.
[15] KATAKE A, OCHOA J, ZBRANEK J, et al. Development and testing of the StarCam SG100:A stellar gyroscope:AIAA-2008-6650[R].Reston:AIAA, 2008.
[16] KRISTIANSEN R, HAGEN D. Modelling of actuator dynamics for spacecraft attitude control[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3):1022-1025.
[17] PASAND M, HASSANI A, GHORBANI M. A study of spacecraft reaction thruster configurations for attitude control system[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(7):22-39.
[18] XIA Y Q, ZHU Z, FU M Y, et al. Attitude tracking of rigid spacecraft with bounded disturbances[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2):647-659.
[19] EGELAND O, GODHAVN J M. Passivity-based adaptive attitude control of a rigid spacecraft[J]. IEEE Transactions on Automatic Control, 1994, 39(4):842-846.
[20] SIDI M J. Spacecraft dynamics and control:A practical engineering approach[M]. Cambridge:Cambridge University Press, 1997.
[21] YU X, ZHU Y K, QIAO J Z, et al. Antidisturbance controllability analysis and enhanced antidisturbance controller design with application to flexible spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5):3393-3404.
[22] GODARD. Fault tolerant control of spacecraft[D]. Toronto:Ryerson University, 2010.
[23] SORENSEN A M. ISO attitude maneuver strategies[C]//Proceedings of the AAS/NASA International Symposium on Advances in the Astronautical Sciences. Reston:AIAA, 1993:975-987.
[24] SINGH G, MACALA G, WONG E, et al. A constraint monitor algorithm for the Cassini spacecraft:AIAA-1997-3526[R].Reston:AIAA, 1997.
[25] FRAKES J P, HENRETTY D A, FLATLEY T W, et al. SAMPEX science pointing with velocity avoidance[C]//Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting Part 2. Reston:AIAA, 1992:949-966.
[26] DE ANGELIS E L, GIULIETTI F, AVANZINI G. Single-axis pointing of underactuated spacecraft in the presence of path constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 38(1):143-147.
[27] DUAN C, HU Q L, ZHANG Y M, et al. Constrained single-axis path planning of underactuated spacecraft[J]. Aerospace Science and Technology, 2020, 107:106345.
[28] 徐瑞, 耿子阳, 朱圣英, 等. 复杂约束下航天器姿态机动球面几何规划方法[J]. 宇航学报, 2021, 42(3):359-366. XU R, GENG Z Y, ZHU S Y, et al. Spherical geometric planning method for spacecraft attitude maneuvering with complex constraints[J]. Journal of Astronautics, 2021, 42(3):359-366(in Chinese).
[29] 李杰. 基于几何力学模型的无人机运动规划与导引方法研究[D]. 长沙:国防科技大学, 2014:5-7. LI J. Research on motion planning and guidance for UAV based on geometric mechanical models[D]. Changsha:National University of Defense Technology, 2014:5-7(in Chinese).
[30] SPINDLER K. New methods in on-board attitude control (AAS 98-308)[J]. Spaceflight Dynamics, 1998, 100:111-124.
[31] BIGGS J D, COLLEY L. Geometric attitude motion planning for spacecraft with pointing and actuator constraints[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(7):1672-1677.
[32] HENNINGER H C, BIGGS J D. Optimal under-actuated kinematic motion planning on the ε[J]. Automatica, 2018, 90:185-195.
[33] GENG Y Z, BIGGS J D, LI C J. Pose regulation via the dual unitary group:An application to spacecraft rendezvous[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6):3734-3748.
[34] KOTPALLIWAR S, PARUCHURI P, PHOGAT K S, et al. A frequency-constrained geometric Pontryagin maximum principle on matrix Lie groups[C]//2018 IEEE Conference on Decision and Control (CDC).Piscataway:IEEE Press, 2018:43-48.
[35] 李益群, 吴勃英, 王常虹. 基于李群谱配点法的卫星姿态仿真[J]. 导航定位与授时, 2017, 4(6):19-23. LI Y Q, WU B Y, WANG C H. Lie group spectral-collocation method for the attitude simulation of satellites[J]. Navigation Positioning and Timing, 2017, 4(6):19-23(in Chinese).
[36] 李益群. 谱变分积分子与刚体几何控制[D]. 哈尔滨:哈尔滨工业大学, 2017:20-21. LI Y Q. Spectral variational integrators and geometric control of rigid bodies[D]. Harbin:Harbin Institute of Technology, 2017:20-21(in Chinese).
[37] MCLNNES C R. Large angle slew maneuvers with autonomous Sun vector avoidance[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4):875-877.
[38] WISNIEWSKI R, KULCZYCKI P. Slew maneuver control for spacecraft equipped with star camera and reaction wheels[J]. Control Engineering Practice, 2005, 13(3):349-356.
[39] 郑重, 宋申民, 张保群. 考虑姿态禁忌约束的航天器安全姿态跟踪控制[J]. 系统工程与电子技术, 2013, 35(3):574-579. ZHENG Z, SONG S M, ZHANG B Q. Spacecraft safe attitude tracking control by considering attitude forbidden constraint[J]. Systems Engineering and Electronics, 2013, 35(3):574-579(in Chinese).
[40] 郭延宁, 李传江, 马广富. 基于势函数法的航天器自主姿态机动控制[J]. 航空学报, 2011, 32(3):457-464. GUO Y N, LI C J, MA G F. Spacecraft autonomous attitude maneuver control by potential function method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):457-464(in Chinese).
[41] LEE U, MESBAHI M. Constrained autonomous precision landing via dual quaternions and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2):292-308.
[42] 崔祜涛, 程小军. 考虑未知输入饱和的指向约束姿态机动控制[J]. 宇航学报, 2013, 34(3):377-383. CUI H T, CHENG X J. Attitude maneuver control of spacecraft with pointing constraints considering unknown input saturation[J]. Journal of Astronautics, 2013, 34(3):377-383(in Chinese).
[43] SHEN Q, YUE C F, GOH C H, et al. Rigid-body attitude stabilization with attitude and angular rate constraints[J]. Automatica, 2018, 90:157-163.
[44] HU Q L, CHI B R, AKELLA M R. Reduced attitude control for boresight alignment with dynamic pointing constraints[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(6):2942-2952.
[45] DONG H Y, HU Q L, LIU Y Y, et al. Adaptive pose tracking control for spacecraft proximity operations under motion constraints[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10):2258-2271.
[46] CHI B R, HU Q L, WANG W. Feedback control for spacecraft proximity operations under field-of-view constraint[C]//2020 IEEE 16th International Conference on Control & Automation. Piscataway:IEEE Press, 2020:65-69.
[47] HU Q L, LIU Y Y, DONG H Y, et al. Saturated attitude control for rigid spacecraft under attitude constraints[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(4):790-805.
[48] HU Q L, LIU Y Y, ZHANG Y M. Velocity-free saturated control for spacecraft proximity operations with guaranteed safety[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(4):2501-2513.
[49] O'NEILL E M, LAUBSCHER R E. Extended studies of a quadrilateralized spherical cube earth data base:ADAO26294[R]. Washington, D.C.:Detense Technical Information Center, 1976.
[50] TEGMARK M. An icosahedron-based method for pixelizing the celestial sphere[J]. The Astrophysical Journal Letters, 1996, 470(2):L81-L84.
[51] KJELLBERG H C, LIGHTSEY E G. Discretized constrained attitude pathfinding and control for satellites[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5):1301-1309.
[52] KJELLBERG H C, LIGHTSEY E G. Discretized quaternion constrained attitude pathfinding[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(3):713-718.
[53] TANYGIN S. Attitude parameterizations as higher-dimensional map projections[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1):13-24.
[54] TANYGIN S. Fast three-axis constrained attitude pathfinding and visualization using minimum distortion parameterizations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(12):2324-2336.
[55] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4):566-580.
[56] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7):846-894.
[57] FERON E, DAHLEH M, FRAZZOLI E, et al. A randomized attitude slew planning algorithm for autonomous spacecraft:AIAA-2001-4155[R].Reston:AIAA, 2001.
[58] YERSHOVA A, LAVALLE S M. Deterministic sampling methods for spheres and SO(3)[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2004:3974-3980.
[59] 仲维国, 崔平远, 崔祜涛. 航天器复杂约束姿态机动的自主规划[J]. 航空学报, 2007, 28(5):1091-1097. ZHONG W G, CUI P Y, CUI H T. Autonomous attitude maneuver planning for spacecraft under complex constraints[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1091-1097(in Chinese).
[60] 崔平远, 徐文明, 崔祜涛, 等. 基于单轴随机扩展算法的自主探测器大角度机动规划[J]. 宇航学报, 2007, 28(2):404-408, 464. CUI P Y, XU W M, CUI H T, et al. A single axis randomized expanding algorithm for the large angle slew planning of autonomous spacecraft[J]. Journal of Astronautics, 2007, 28(2):404-408, 464(in Chinese).
[61] LEE D Y, GUPTA R, KALABIĆ U V, et al. Geometric mechanics based nonlinear model predictive spacecraft attitude control with reaction wheels[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2):309-319.
[62] GUPTA R, KALABIĆ U V, DI CAIRANO S, et al. Constrained spacecraft attitude control on SO(3) using fast nonlinear model predictive control[C]//2015 American Control Conference (ACC). Piscataway:IEEE Press, 2015:2980-2986.
[63] LIU X F, LU P, PAN B F. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1):23-40.
[64] KIM Y, MESBAHI M. Quadratically constrained attitude control via semidefinite programming[J]. IEEE Transactions on Automatic Control, 2004, 49(5):731-735.
[65] KIM Y, MESBAHI M, SINGH G, et al. On the convex parameterization of constrained spacecraft reorientation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1097-1109.
[66] SUN C C, DAI R. Spacecraft attitude control under constrained zones via quadratically constrained quadratic programming:AIAA-2015-2010[R].Reston:AIAA, 2015.
[67] TAM M, GLENN L E. Constrained spacecraft reorientation using mixed integer convex programming[J]. Acta Astronautica, 2016, 127:31-40.
[68] 黄旭星, 李爽, 杨彬, 等. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4):524201. HUANG X X, LI S, YANG B, et al. Spacecraft guidance and control based on artificial intelligence:review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524201(in Chinese).
[69] 包为民. 航天智能控制技术让运载火箭"会学习"[J]. 航空学报, 2021, 42(11):525055. BAO W M. Space intelligent control technology enables launch vehicle to "self-learning"[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):525055(in Chinese).
[70] IZZO D, MÄRTENS M, PAN B F. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics, 2019, 3(4):287-299.
[71] KORNFELD R. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms:AIAA-2003-5784[R].Reston:AIAA, 2003.
[72] 戈新生, 陈立群, 刘延柱. 欠驱动刚体航天器姿态运动规划的遗传算法[J]. 动力学与控制学报, 2004, 2(2):53-57. GE X S, CHEN L Q, LIU Y Z. A genetic algorithm for the attitude motion planning of the underactuated rigid spacecraft[J]. Journal of Dynamics and Control, 2004, 2(2):53-57(in Chinese)
[73] WU C Q, HAN X D, AN W Y, et al. Application of the improved grey wolf algorithm in spacecraft maneuvering path planning[J]. International Journal of Aerospace Engineering, 2022, 2022:8857584.
[74] SPILLER D, ANSALONE L, CURTI F. Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2):312-325.
[75] SPILLER D, MELTON R G, CURTI F. Inverse dynamics particle swarm optimization applied to constrained minimum-time maneuvers using reaction wheels[J]. Aerospace Science and Technology, 2018, 75:1-12.
[76] WU C Q, XU R, ZHU S Y, et al. Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints[J]. Acta Astronautica, 2017, 137:128-137.
[77] MELTON R G. Differential evolution/particle swarm optimizer for constrained slew maneuvers[J]. Acta Astronautica, 2018, 148:246-259.
[78] 闫皎洁, 张锲石, 胡希平. 基于强化学习的路径规划技术综述[J]. 计算机工程, 2021, 47(10):16-25. YAN J J, ZHANG Q S, HU X P. Review of path planning techniques based on reinforcement learning[J]. Computer Engineering, 2021, 47(10):16-25(in Chinese).
[79] SUTTON R S, BARTO A G. Reinforcement learning:an introduction[M]. 2nd ed. Boston:Kluwer Academic Publisher,1998.
[80] MA Z, WANG Y J, YANG Y D, et al. Reinforcement learning-based satellite attitude stabilization method for non-cooperative target capturing[J]. Sensors (Basel, Switzerland), 2018, 18(12):4331.
[81] VEDANT J. Reinforcement learning for spacecraft attitude control[C]//70th International Astronautical Congress. Washington, D.C.:NASA, 2019.
[82] ELKINS J G, SOOD R, RUMPF C. Bridging reinforcement learning and online learning for spacecraft attitude control[J]. Journal of Aerospace Information Systems, 2021, 19(1):62-69.
[83] YANG H Y, HU Q L, DONG H Y, et al. ADP-based spacecraft attitude control under actuator misalignment and pointing constraints[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9):9342-9352.
[84] WEN J T Y, KREUTZ-DELGADO K. The attitude control problem[J]. IEEE Transactions on Automatic Control, 1991, 36(10):1148-1162.
[85] IOANNOU P A, SUN J. Robust adaptive control[M]. Upper Saddle River:PTR Prentice-Hall, 1996.
[86] THAKUR D, SRIKANT S, AKELLA M R. Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters[J]. Journal of Guidance, Control, and Dynamics, 2014, 38(1):41-52.
[87] ASTOLFI A, ORTEGA R. Immersion and invariance:A new tool for stabilization and adaptive control of nonlinear systems[J]. IFAC Proceedings Volumes, 2001, 34(6):91-96.
[88] SEO D, AKELLA M R. High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):884-891.
[89] SHAO X D, HU Q L, SHI Y. Adaptive pose control for spacecraft proximity operations with prescribed performance under spatial motion constraints[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4):1405-1419.
[90] KARAGIANNIS D, SASSANO M, ASTOLFI A. Dynamic scaling and observer design with application to adaptive control[J]. Automatica, 2009, 45(12):2883-2889.
[91] YANG S, AKELLA M R, MAZENC F. Dynamically scaled immersion and invariance adaptive control for Euler-Lagrange mechanical systems[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11):2844-2856.
[92] WEN H W, YUE X K, YUAN J P. Dynamic scaling-based noncertainty-equivalent adaptive spacecraft attitude tracking control[J]. Journal of Aerospace Engineering, 2017, 31(2):04017098.
[93] XIA D D, YUE X K. Anti-unwinding immersion and invariance adaptive attitude control of rigid spacecraft with inertia uncertainties[J]. Journal of Aerospace Engineering, 2021, 35(2):04021137.
[94] BOYD S, SASTRY S S. Necessary and sufficient conditions for parameter convergence in adaptive control[J]. Automatica, 1986, 22(6):629-639.
[95] CHOWDHARY G, JOHNSON E. Concurrent learning for convergence in adaptive control without persistency of excitation[C]//49th IEEE Conference on Decision and Control. Piscataway:IEEE Press, 2010:3674-3679.
[96] ZHAO Q, DUAN G R. Concurrent learning adaptive finite-time control for spacecraft with inertia parameter identification under external disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6):3691-3704.
[97] CHO N, SHIN H S, KIM Y, et al. Composite model reference adaptive control with parameter convergence under finite excitation[J]. IEEE Transactions on Automatic Control, 2018, 63(3):811-818.
[98] PAN Y P, YU H Y. Composite learning robot control with guaranteed parameter convergence[J]. Automatica, 2018, 89:398-406.
[99] DONG H Y, HU Q L, AKELLA M R, et al. Composite adaptive attitude-tracking control with parameter convergence under finite excitation[J]. IEEE Transactions on Control Systems Technology, 2020, 28(6):2657-2664.
[100] SHAO X D, HU Q L, LI D C, et al. Composite adaptive control for anti-unwinding attitude maneuvers:An exponential stability result without persistent excitation[EB/OL]. (2021-08-23)[2022-04-27]. https://arxiv.org/abs/2108.09901.
[101] DOYLE J C, GLOVER K, KHARGONEKAR P P, et al. State-space solutions to standard H2 and H control problems[J]. IEEE Transactions on Automatic Control, 1989, 34(8):831-847.
[102] LIU C, SHI K K, SUN Z W. Robust H controller design for attitude stabilization of flexible spacecraft with input constraints[J]. Advances in Space Research, 2019, 63(5):1498-1522.
[103] CHEN B S, WU C S, JAN Y W. Adaptive fuzzy mixed H2/H attitude control of spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1343-1359.
[104] LIU C, YE D, SHI K K, et al. Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H control strategy under poles assignment constraint[J]. Acta Astronautica, 2017, 136:166-175.
[105] LUO W C, CHU Y C, LING K V. H-infinity inverse optimal attitude-tracking control of rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):481-494.
[106] WANG Z, LI Y. Rigid spacecraft robust optimal attitude stabilization under actuator misalignments[J]. Aerospace Science and Technology, 2020, 105:105990.
[107] HU Q L. Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics[J]. Nonlinear Dynamics, 2008, 52(3):227-248.
[108] LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12):3591-3599.
[109] GUO Y, HUANG B, SONG S M, et al. Robust saturated finite-time attitude control for spacecraft using integral sliding mode[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(2):440-446.
[110] WALLSGROVE R J, AKELLA M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5):957-963.
[111] HU Q L, LI L, FRISWELL M I. Spacecraft anti-unwinding attitude control with actuator nonlinearities and velocity limit[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(10):2042-2050.
[112] HU Q L, TAN X. Unified attitude control for spacecraft under velocity and control constraints[J]. Aerospace Science and Technology, 2017, 67:257-264.
[113] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1):19-23. HAN J Q. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1):19-23(in Chinese).
[114] 杨飞, 谈树萍, 薛文超, 等. 饱和约束测量扩张状态滤波与无拖曳卫星位姿自抗扰控制[J]. 自动化学报, 2020, 46(11):2337-2349. YANG F, TAN S P, XUE W C, et al. Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites[J]. Acta Automatica Sinica, 2020, 46(11):2337-2349(in Chinese).
[115] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Piscataway:IEEE Press, 2003:4989-4996.
[116] BAI Y L, BIGGS J D, ZAZZERA F B, et al. Adaptive attitude tracking with active uncertainty rejection[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):550-558.
[117] OHISHI K, NAKAO M, OHNISHI K, et al. Microprocessor-controlled DC motor for load-insensitive position servo system[J]. IEEE Transactions on Industrial Electronics, 1987, IE-34(1):44-49.
[118] CHEN W H, BALLANCE D J, GAWTHROP P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4):932-938.
[119] SUN L, ZHENG Z W. Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10):7994-8002.
[120] ZHANG J H, ZHAO W S, SHEN G H, et al. Disturbance observer-based adaptive finite-time attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(11):6606-6613.
[121] ZHU W W, ZONG Q, TIAN B L, et al. Disturbance observer-based active vibration suppression and attitude control for flexible spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(2):893-901.
[122] YAN R D, WU Z. Super-twisting disturbance observer-based finite-time attitude stabilization of flexible space-craft subject to complex disturbances[J]. Journal of Vi-bration and Control, 2019, 25(5):1008-1018.
[123] HE T F, WU Z. Iterative learning disturbance observer based attitude stabilization of flexible spacecraft subject to complex disturbances and measurement noises[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(9):1576-1587.
[124] GUO L. Composite Hierarchical anti-disturbance control for systems with multiple disturbances:survey and over-view[C]//Proceedings of the 30th Chinese Control Con-ference, 2011:6193-6198.
[125] GUO L, CHEN W H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach[J]. International Journal of Robust and Nonlinear Control, 2005, 15(3):109-125.
[126] CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods-An overview[J]. IEEE Transactions on industrial electronics, 2015, 63(2):1083-1095.
[127] ZHU Y K, GUO L, QIAO J Z, et al. An enhanced anti-disturbance attitude control law for flexible spacecrafts subject to multiple disturbances[J]. Control Engineering Practice, 2019, 84:274-283.
[128] TAFAZOLI M. A study of on-orbit spacecraft failures[J]. Acta Astronautica, 2009, 64(2-3):195-205.
[129] ZHANG Y M, JIANG J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. IFAC Proceedings Volumes, 2003, 36(5):257-268.
[130] YIN S, XIAO B, DING S X, et al. A review on recent development of spacecraft attitude fault tolerant control system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3311-3320.
[131] CAI W C, LIAO X H, SONG Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1456-1463.
[132] SHEN Q, WANG D W, ZHU S Q, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2390-2405.
[133] XIAO Y, DE RUITER A, YE D, et al. Adaptive fault-tolerant attitude tracking control for flexible spacecraft with guaranteed performance bounds[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3):1922-1940.
[134] HU Q L, SHAO X D, GUO L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1):331-341.
[135] SHAO X D, HU Q L, SHI Y, et al. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2):574-582.
[136] 沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报, 2020, 41(6):647-656. SHEN Y, LI L L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41(6):647-656(in Chinese).
[137] HU Q L, XIAO B, LI B, et al. Robust fault-tolerant attitude control[C]//Fault-Tolerant Attitude Control of Spacecraft. Amsterdam:Elsevier, 2021:37-80.
[138] SHEN Q, YUE C F, GOH C H, et al. Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5):3763-3772.
[139] LI Y D, HU Q L, SHAO X D. Neural network-based fault diagnosis for spacecraft with single-gimbal control moment gyros[J]. Chinese Journal of Aeronautics, 2022, 35(7):261-273.
[140] LI B, HU Q L, YU Y B, et al. Observer-based fault-tolerant attitude control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5):2572-2582.
[141] RAN D C, CHEN X Q, DE RUITER A, et al. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels[J]. Acta Astronautica, 2018, 145:501-514.
[142] HU Q L, ZHANG X X, NIU G L. Observer-based fault tolerant control and experimental verification for rigid spacecraft[J]. Aerospace Science and Technology, 2019, 92:373-386.
[143] GUI H C. Observer-based fault-tolerant spacecraft attitude tracking using sequential Lyapunov analyses[J]. IEEE Transactions on Automatic Control, 2021, 66(12):6108-6114.
[144] SHEN Q, WANG D W, ZHU S Q, et al. Inertia-free fault-tolerant spacecraft attitude tracking using control allocation[J]. Automatica, 2015, 62:114-121.
[145] SHEN Q, WANG D W, ZHU S Q, et al. Robust control allocation for spacecraft attitude tracking under actuator faults[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3):1068-1075.
[146] LI B, HU Q L, MA G F, et al. Fault-tolerant attitude stabilization incorporating closed-loop control allocation under actuator failure[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4):1989-2000.
[147] HU Q L, TAN X, AKELLA M R. Closed-loop-based control allocation for spacecraft attitude stabilization with actuator fault[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4):944-953.
[148] YANG C D, SUN Y P. Mixed H2/H state-feedback design for microsatellite attitude control[J]. Control Engineering Practice, 2002, 10(9):951-970.
[149] SUN L, HUO W. Adaptive robust control with L2-gain performance for autonomous spacecraft proximity maneuvers[J]. Journal of Spacecraft and Rockets, 2016, 53(2):249-257.
[150] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099.
[151] 魏才盛, 罗建军, 殷泽阳. 航天器姿态预设性能控制方法综述[J]. 宇航学报, 2019, 40(10):1167-1176. WEI C S, LUO J J, YIN Z Y. A review of prescribed performance control for spacecraft attitude[J]. Journal of Astronautics, 2019, 40(10):1167-1176(in Chinese).
[152] WEI C S, CHEN Q F, LIU J, et al. An overview of prescribed performance control and its application to spacecraft attitude system[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2021, 235(4):435-447.
[153] LIU M M, SHAO X D, MA G F. Appointed-time fault-tolerant attitude tracking control of spacecraft with double-level guaranteed performance bounds[J]. Aerospace Science and Technology, 2019, 92:337-346.
[154] HUANG X W, DUAN G R. Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance[J]. ISA Transactions, 2020, 98:161-172.
[155] BECHLIOULIS C P, ROVITHAKIS G A. A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems[J]. Automatica, 2014, 50(4):1217-1226.
[156] ZHOU Z G, ZHANG Y A, SHI X N, et al. Robust attitude tracking for rigid spacecraft with prescribed transient performance[J]. International Journal of Control, 2017, 90(11):2471-2479.
[157] 殷泽阳, 罗建军, 魏才盛, 等. 非合作目标接近与跟踪的低复杂度预设性能控制[J]. 宇航学报, 2017, 38(8):855-864. YIN Z Y, LUO J J, WEI C S, et al. Low-complexity prescribed performance control for approaching and tracking a non-cooperative target[J]. Journal of Astronautics, 2017, 38(8):855-864(in Chinese).
[158] LUO J J, YIN Z Y, WEI C S, et al. Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking[J]. Aerospace Science and Technology, 2018, 74:173-183.
[159] YIN Z Y, SULEMAN A, LUO J J, et al. Appointed-time prescribed performance attitude tracking control via double performance functions[J]. Aerospace Science and Technology, 2019, 93:105337.
[160] HU Y B, GENG Y H, WU B L, et al. Model-free prescribed performance control for spacecraft attitude tracking[J]. IEEE Transactions on Control Systems Technology, 2021, 29(1):165-179.
[161] YONG K N, CHEN M, SHI Y, et al. Flexible performance-based robust control for a class of nonlinear systems with input saturation[J]. Automatica, 2020, 122:109268.
[162] TSIOTRAS P. Further passivity results for the attitude control problem[J]. IEEE Transactions on Automatic Control, 1998, 43(11):1597-1600.
[163] AKELLA M R, THAKUR D, MAZENC F. Partial Lyapunov strictification:smooth angular velocity observers for attitude tracking control[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(3):442-451.
[164] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1680-1685.
[165] WU B L, SHEN Q, CAO X B. Event-triggered attitude control of spacecraft[J]. Advances in Space Research, 2018, 61(3):927-934.
[166] 石永霞, 胡庆雷, 邵小东. 角速度受限下航天器姿态机动事件触发控制[J]. 中国科学:信息科学, 2022, 52(3):506-520. SHI Y X, HU Q L, SHAO X D. Event-triggered attitude maneuver control of spacecraft under angular velocity constraints[J]. Scientia Sinica (Informationis), 2022, 52(3):506-520(in Chinese).
[167] 刘付成. 人工智能在航天器控制中的应用[J]. 飞控与探测, 2018, 1(1):16-25. LIU F C. Application of artificial intelligence in spacecraft[J]. Flight Control & Detection, 2018, 1(1):16-25(in Chinese).
[168] SHIROBOKOV M, TROFIMOV S, OVCHINNIKOV M. Survey of machine learning techniques in spacecraft control design[J]. Acta Astronautica, 2021, 186:87-97.
[169] HU Q L, XIAO B. Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation[J]. Aerospace Science and Technology, 2012, 23(1):63-74.
文章导航

/