[1] 徐广德, 武江凯, 苟仲秋, 等. 国外航天器高精度高稳定度高敏捷指向技术综述[J]. 航天器工程, 2017, 26(1):91-99. XU G D, WU J K, GOU Z Q, et al. High accuracy high stability and high agility pointing technology of spacecraft[J]. Spacecraft Engineering, 2017, 26(1):91-99(in Chinese).
[2] 吴树范, 王楠, 龚德仁. 引力波探测科学任务关键技术[J]. 深空探测学报, 2020, 7(2):118-127. WU S F, WANG N, GONG D R. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration, 2020, 7(2):118-127(in Chinese).
[3] 袁利, 黄煌. 空间飞行器智能自主控制技术现状与发展思考[J]. 空间控制技术与应用, 2019, 45(4):7-18. YUAN L, HUANG H. Current trends of spacecraft intelligent autonomous control[J]. Aerospace Control and Application, 2019, 45(4):7-18(in Chinese).
[4] SHAO X D, HU Q L, SHI Y, et al. Data-driven immersion and invariance adaptive attitude control for rigid bodies with double-level state constraints[J]. IEEE Transactions on Control Systems Technology, 2022, 30(2):779-794.
[5] DONG H Y, ZHAO X W, YANG H Y. Reinforcement learning-based approximate optimal control for attitude reorientation under state constraints[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4):1664-1673.
[6] LEE U, MESBAHI M. Feedback control for spacecraft reorientation under attitude constraints via convex potentials[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):2578-2592.
[7] AYOUBI M A, HSIN J. Sun-avoidance slew planning with keep-out cone and actuator constraints[J]. Journal of Spacecraft and Rockets, 2020, 57(6):1175-1185.
[8] FABINSKY B. A survey of ground operations tools developed to plan and validate the pointing of space telescopes and the design for WISE[C]//Modeling, Systems Engineering, and Project Management for Astronomy II. Cradiff:SPIE, 2006:383-395.
[9] HABLANI H B. Attitude commands avoiding bright objects and maintaining communication with ground station[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(6):759-767.
[10] WIE B, LU J B. Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6):1372-1379.
[11] AKELLA M R, VALDIVIA A, KOTAMRAJU G R. Velocity-free attitude controllers subject to actuator magnitude and rate saturations[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4):659-666.
[12] WANG X W, WU G H, XING L N, et al. Agile earth observation satellite scheduling over 20 years:Formulations, methods, and future directions[J]. IEEE Systems Journal, 2021, 15(3):3881-3892.
[13] MARSH H, KARPENKO M, GONG Q. Energy constrained shortest-time maneuvers for reaction wheel satellites:AIAA-2016-5579[R]. Reston:AIAA, 2016.
[14] HU Q L, CHI B R, AKELLA M R. Anti-unwinding attitude control of spacecraft with forbidden pointing constraints[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(4):822-835.
[15] KATAKE A, OCHOA J, ZBRANEK J, et al. Development and testing of the StarCam SG100:A stellar gyroscope:AIAA-2008-6650[R].Reston:AIAA, 2008.
[16] KRISTIANSEN R, HAGEN D. Modelling of actuator dynamics for spacecraft attitude control[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3):1022-1025.
[17] PASAND M, HASSANI A, GHORBANI M. A study of spacecraft reaction thruster configurations for attitude control system[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(7):22-39.
[18] XIA Y Q, ZHU Z, FU M Y, et al. Attitude tracking of rigid spacecraft with bounded disturbances[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2):647-659.
[19] EGELAND O, GODHAVN J M. Passivity-based adaptive attitude control of a rigid spacecraft[J]. IEEE Transactions on Automatic Control, 1994, 39(4):842-846.
[20] SIDI M J. Spacecraft dynamics and control:A practical engineering approach[M]. Cambridge:Cambridge University Press, 1997.
[21] YU X, ZHU Y K, QIAO J Z, et al. Antidisturbance controllability analysis and enhanced antidisturbance controller design with application to flexible spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5):3393-3404.
[22] GODARD. Fault tolerant control of spacecraft[D]. Toronto:Ryerson University, 2010.
[23] SORENSEN A M. ISO attitude maneuver strategies[C]//Proceedings of the AAS/NASA International Symposium on Advances in the Astronautical Sciences. Reston:AIAA, 1993:975-987.
[24] SINGH G, MACALA G, WONG E, et al. A constraint monitor algorithm for the Cassini spacecraft:AIAA-1997-3526[R].Reston:AIAA, 1997.
[25] FRAKES J P, HENRETTY D A, FLATLEY T W, et al. SAMPEX science pointing with velocity avoidance[C]//Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting Part 2. Reston:AIAA, 1992:949-966.
[26] DE ANGELIS E L, GIULIETTI F, AVANZINI G. Single-axis pointing of underactuated spacecraft in the presence of path constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 38(1):143-147.
[27] DUAN C, HU Q L, ZHANG Y M, et al. Constrained single-axis path planning of underactuated spacecraft[J]. Aerospace Science and Technology, 2020, 107:106345.
[28] 徐瑞, 耿子阳, 朱圣英, 等. 复杂约束下航天器姿态机动球面几何规划方法[J]. 宇航学报, 2021, 42(3):359-366. XU R, GENG Z Y, ZHU S Y, et al. Spherical geometric planning method for spacecraft attitude maneuvering with complex constraints[J]. Journal of Astronautics, 2021, 42(3):359-366(in Chinese).
[29] 李杰. 基于几何力学模型的无人机运动规划与导引方法研究[D]. 长沙:国防科技大学, 2014:5-7. LI J. Research on motion planning and guidance for UAV based on geometric mechanical models[D]. Changsha:National University of Defense Technology, 2014:5-7(in Chinese).
[30] SPINDLER K. New methods in on-board attitude control (AAS 98-308)[J]. Spaceflight Dynamics, 1998, 100:111-124.
[31] BIGGS J D, COLLEY L. Geometric attitude motion planning for spacecraft with pointing and actuator constraints[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(7):1672-1677.
[32] HENNINGER H C, BIGGS J D. Optimal under-actuated kinematic motion planning on the ε[J]. Automatica, 2018, 90:185-195.
[33] GENG Y Z, BIGGS J D, LI C J. Pose regulation via the dual unitary group:An application to spacecraft rendezvous[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6):3734-3748.
[34] KOTPALLIWAR S, PARUCHURI P, PHOGAT K S, et al. A frequency-constrained geometric Pontryagin maximum principle on matrix Lie groups[C]//2018 IEEE Conference on Decision and Control (CDC).Piscataway:IEEE Press, 2018:43-48.
[35] 李益群, 吴勃英, 王常虹. 基于李群谱配点法的卫星姿态仿真[J]. 导航定位与授时, 2017, 4(6):19-23. LI Y Q, WU B Y, WANG C H. Lie group spectral-collocation method for the attitude simulation of satellites[J]. Navigation Positioning and Timing, 2017, 4(6):19-23(in Chinese).
[36] 李益群. 谱变分积分子与刚体几何控制[D]. 哈尔滨:哈尔滨工业大学, 2017:20-21. LI Y Q. Spectral variational integrators and geometric control of rigid bodies[D]. Harbin:Harbin Institute of Technology, 2017:20-21(in Chinese).
[37] MCLNNES C R. Large angle slew maneuvers with autonomous Sun vector avoidance[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4):875-877.
[38] WISNIEWSKI R, KULCZYCKI P. Slew maneuver control for spacecraft equipped with star camera and reaction wheels[J]. Control Engineering Practice, 2005, 13(3):349-356.
[39] 郑重, 宋申民, 张保群. 考虑姿态禁忌约束的航天器安全姿态跟踪控制[J]. 系统工程与电子技术, 2013, 35(3):574-579. ZHENG Z, SONG S M, ZHANG B Q. Spacecraft safe attitude tracking control by considering attitude forbidden constraint[J]. Systems Engineering and Electronics, 2013, 35(3):574-579(in Chinese).
[40] 郭延宁, 李传江, 马广富. 基于势函数法的航天器自主姿态机动控制[J]. 航空学报, 2011, 32(3):457-464. GUO Y N, LI C J, MA G F. Spacecraft autonomous attitude maneuver control by potential function method[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):457-464(in Chinese).
[41] LEE U, MESBAHI M. Constrained autonomous precision landing via dual quaternions and model predictive control[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2):292-308.
[42] 崔祜涛, 程小军. 考虑未知输入饱和的指向约束姿态机动控制[J]. 宇航学报, 2013, 34(3):377-383. CUI H T, CHENG X J. Attitude maneuver control of spacecraft with pointing constraints considering unknown input saturation[J]. Journal of Astronautics, 2013, 34(3):377-383(in Chinese).
[43] SHEN Q, YUE C F, GOH C H, et al. Rigid-body attitude stabilization with attitude and angular rate constraints[J]. Automatica, 2018, 90:157-163.
[44] HU Q L, CHI B R, AKELLA M R. Reduced attitude control for boresight alignment with dynamic pointing constraints[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(6):2942-2952.
[45] DONG H Y, HU Q L, LIU Y Y, et al. Adaptive pose tracking control for spacecraft proximity operations under motion constraints[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10):2258-2271.
[46] CHI B R, HU Q L, WANG W. Feedback control for spacecraft proximity operations under field-of-view constraint[C]//2020 IEEE 16th International Conference on Control & Automation. Piscataway:IEEE Press, 2020:65-69.
[47] HU Q L, LIU Y Y, DONG H Y, et al. Saturated attitude control for rigid spacecraft under attitude constraints[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(4):790-805.
[48] HU Q L, LIU Y Y, ZHANG Y M. Velocity-free saturated control for spacecraft proximity operations with guaranteed safety[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(4):2501-2513.
[49] O'NEILL E M, LAUBSCHER R E. Extended studies of a quadrilateralized spherical cube earth data base:ADAO26294[R]. Washington, D.C.:Detense Technical Information Center, 1976.
[50] TEGMARK M. An icosahedron-based method for pixelizing the celestial sphere[J]. The Astrophysical Journal Letters, 1996, 470(2):L81-L84.
[51] KJELLBERG H C, LIGHTSEY E G. Discretized constrained attitude pathfinding and control for satellites[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(5):1301-1309.
[52] KJELLBERG H C, LIGHTSEY E G. Discretized quaternion constrained attitude pathfinding[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(3):713-718.
[53] TANYGIN S. Attitude parameterizations as higher-dimensional map projections[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1):13-24.
[54] TANYGIN S. Fast three-axis constrained attitude pathfinding and visualization using minimum distortion parameterizations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(12):2324-2336.
[55] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4):566-580.
[56] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7):846-894.
[57] FERON E, DAHLEH M, FRAZZOLI E, et al. A randomized attitude slew planning algorithm for autonomous spacecraft:AIAA-2001-4155[R].Reston:AIAA, 2001.
[58] YERSHOVA A, LAVALLE S M. Deterministic sampling methods for spheres and SO(3)[C]//IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2004:3974-3980.
[59] 仲维国, 崔平远, 崔祜涛. 航天器复杂约束姿态机动的自主规划[J]. 航空学报, 2007, 28(5):1091-1097. ZHONG W G, CUI P Y, CUI H T. Autonomous attitude maneuver planning for spacecraft under complex constraints[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1091-1097(in Chinese).
[60] 崔平远, 徐文明, 崔祜涛, 等. 基于单轴随机扩展算法的自主探测器大角度机动规划[J]. 宇航学报, 2007, 28(2):404-408, 464. CUI P Y, XU W M, CUI H T, et al. A single axis randomized expanding algorithm for the large angle slew planning of autonomous spacecraft[J]. Journal of Astronautics, 2007, 28(2):404-408, 464(in Chinese).
[61] LEE D Y, GUPTA R, KALABIĆ U V, et al. Geometric mechanics based nonlinear model predictive spacecraft attitude control with reaction wheels[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2):309-319.
[62] GUPTA R, KALABIĆ U V, DI CAIRANO S, et al. Constrained spacecraft attitude control on SO(3) using fast nonlinear model predictive control[C]//2015 American Control Conference (ACC). Piscataway:IEEE Press, 2015:2980-2986.
[63] LIU X F, LU P, PAN B F. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1):23-40.
[64] KIM Y, MESBAHI M. Quadratically constrained attitude control via semidefinite programming[J]. IEEE Transactions on Automatic Control, 2004, 49(5):731-735.
[65] KIM Y, MESBAHI M, SINGH G, et al. On the convex parameterization of constrained spacecraft reorientation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1097-1109.
[66] SUN C C, DAI R. Spacecraft attitude control under constrained zones via quadratically constrained quadratic programming:AIAA-2015-2010[R].Reston:AIAA, 2015.
[67] TAM M, GLENN L E. Constrained spacecraft reorientation using mixed integer convex programming[J]. Acta Astronautica, 2016, 127:31-40.
[68] 黄旭星, 李爽, 杨彬, 等. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4):524201. HUANG X X, LI S, YANG B, et al. Spacecraft guidance and control based on artificial intelligence:review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524201(in Chinese).
[69] 包为民. 航天智能控制技术让运载火箭"会学习"[J]. 航空学报, 2021, 42(11):525055. BAO W M. Space intelligent control technology enables launch vehicle to "self-learning"[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):525055(in Chinese).
[70] IZZO D, MÄRTENS M, PAN B F. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics, 2019, 3(4):287-299.
[71] KORNFELD R. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms:AIAA-2003-5784[R].Reston:AIAA, 2003.
[72] 戈新生, 陈立群, 刘延柱. 欠驱动刚体航天器姿态运动规划的遗传算法[J]. 动力学与控制学报, 2004, 2(2):53-57. GE X S, CHEN L Q, LIU Y Z. A genetic algorithm for the attitude motion planning of the underactuated rigid spacecraft[J]. Journal of Dynamics and Control, 2004, 2(2):53-57(in Chinese)
[73] WU C Q, HAN X D, AN W Y, et al. Application of the improved grey wolf algorithm in spacecraft maneuvering path planning[J]. International Journal of Aerospace Engineering, 2022, 2022:8857584.
[74] SPILLER D, ANSALONE L, CURTI F. Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(2):312-325.
[75] SPILLER D, MELTON R G, CURTI F. Inverse dynamics particle swarm optimization applied to constrained minimum-time maneuvers using reaction wheels[J]. Aerospace Science and Technology, 2018, 75:1-12.
[76] WU C Q, XU R, ZHU S Y, et al. Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints[J]. Acta Astronautica, 2017, 137:128-137.
[77] MELTON R G. Differential evolution/particle swarm optimizer for constrained slew maneuvers[J]. Acta Astronautica, 2018, 148:246-259.
[78] 闫皎洁, 张锲石, 胡希平. 基于强化学习的路径规划技术综述[J]. 计算机工程, 2021, 47(10):16-25. YAN J J, ZHANG Q S, HU X P. Review of path planning techniques based on reinforcement learning[J]. Computer Engineering, 2021, 47(10):16-25(in Chinese).
[79] SUTTON R S, BARTO A G. Reinforcement learning:an introduction[M]. 2nd ed. Boston:Kluwer Academic Publisher,1998.
[80] MA Z, WANG Y J, YANG Y D, et al. Reinforcement learning-based satellite attitude stabilization method for non-cooperative target capturing[J]. Sensors (Basel, Switzerland), 2018, 18(12):4331.
[81] VEDANT J. Reinforcement learning for spacecraft attitude control[C]//70th International Astronautical Congress. Washington, D.C.:NASA, 2019.
[82] ELKINS J G, SOOD R, RUMPF C. Bridging reinforcement learning and online learning for spacecraft attitude control[J]. Journal of Aerospace Information Systems, 2021, 19(1):62-69.
[83] YANG H Y, HU Q L, DONG H Y, et al. ADP-based spacecraft attitude control under actuator misalignment and pointing constraints[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9):9342-9352.
[84] WEN J T Y, KREUTZ-DELGADO K. The attitude control problem[J]. IEEE Transactions on Automatic Control, 1991, 36(10):1148-1162.
[85] IOANNOU P A, SUN J. Robust adaptive control[M]. Upper Saddle River:PTR Prentice-Hall, 1996.
[86] THAKUR D, SRIKANT S, AKELLA M R. Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters[J]. Journal of Guidance, Control, and Dynamics, 2014, 38(1):41-52.
[87] ASTOLFI A, ORTEGA R. Immersion and invariance:A new tool for stabilization and adaptive control of nonlinear systems[J]. IFAC Proceedings Volumes, 2001, 34(6):91-96.
[88] SEO D, AKELLA M R. High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4):884-891.
[89] SHAO X D, HU Q L, SHI Y. Adaptive pose control for spacecraft proximity operations with prescribed performance under spatial motion constraints[J]. IEEE Transactions on Control Systems Technology, 2021, 29(4):1405-1419.
[90] KARAGIANNIS D, SASSANO M, ASTOLFI A. Dynamic scaling and observer design with application to adaptive control[J]. Automatica, 2009, 45(12):2883-2889.
[91] YANG S, AKELLA M R, MAZENC F. Dynamically scaled immersion and invariance adaptive control for Euler-Lagrange mechanical systems[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11):2844-2856.
[92] WEN H W, YUE X K, YUAN J P. Dynamic scaling-based noncertainty-equivalent adaptive spacecraft attitude tracking control[J]. Journal of Aerospace Engineering, 2017, 31(2):04017098.
[93] XIA D D, YUE X K. Anti-unwinding immersion and invariance adaptive attitude control of rigid spacecraft with inertia uncertainties[J]. Journal of Aerospace Engineering, 2021, 35(2):04021137.
[94] BOYD S, SASTRY S S. Necessary and sufficient conditions for parameter convergence in adaptive control[J]. Automatica, 1986, 22(6):629-639.
[95] CHOWDHARY G, JOHNSON E. Concurrent learning for convergence in adaptive control without persistency of excitation[C]//49th IEEE Conference on Decision and Control. Piscataway:IEEE Press, 2010:3674-3679.
[96] ZHAO Q, DUAN G R. Concurrent learning adaptive finite-time control for spacecraft with inertia parameter identification under external disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6):3691-3704.
[97] CHO N, SHIN H S, KIM Y, et al. Composite model reference adaptive control with parameter convergence under finite excitation[J]. IEEE Transactions on Automatic Control, 2018, 63(3):811-818.
[98] PAN Y P, YU H Y. Composite learning robot control with guaranteed parameter convergence[J]. Automatica, 2018, 89:398-406.
[99] DONG H Y, HU Q L, AKELLA M R, et al. Composite adaptive attitude-tracking control with parameter convergence under finite excitation[J]. IEEE Transactions on Control Systems Technology, 2020, 28(6):2657-2664.
[100] SHAO X D, HU Q L, LI D C, et al. Composite adaptive control for anti-unwinding attitude maneuvers:An exponential stability result without persistent excitation[EB/OL]. (2021-08-23)[2022-04-27]. https://arxiv.org/abs/2108.09901.
[101] DOYLE J C, GLOVER K, KHARGONEKAR P P, et al. State-space solutions to standard H2 and H∞ control problems[J]. IEEE Transactions on Automatic Control, 1989, 34(8):831-847.
[102] LIU C, SHI K K, SUN Z W. Robust H∞ controller design for attitude stabilization of flexible spacecraft with input constraints[J]. Advances in Space Research, 2019, 63(5):1498-1522.
[103] CHEN B S, WU C S, JAN Y W. Adaptive fuzzy mixed H2/H∞ attitude control of spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1343-1359.
[104] LIU C, YE D, SHI K K, et al. Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H∞ control strategy under poles assignment constraint[J]. Acta Astronautica, 2017, 136:166-175.
[105] LUO W C, CHU Y C, LING K V. H-infinity inverse optimal attitude-tracking control of rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):481-494.
[106] WANG Z, LI Y. Rigid spacecraft robust optimal attitude stabilization under actuator misalignments[J]. Aerospace Science and Technology, 2020, 105:105990.
[107] HU Q L. Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics[J]. Nonlinear Dynamics, 2008, 52(3):227-248.
[108] LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence[J]. Automatica, 2013, 49(12):3591-3599.
[109] GUO Y, HUANG B, SONG S M, et al. Robust saturated finite-time attitude control for spacecraft using integral sliding mode[J]. Journal of Guidance, Control, and Dynamics, 2018, 42(2):440-446.
[110] WALLSGROVE R J, AKELLA M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5):957-963.
[111] HU Q L, LI L, FRISWELL M I. Spacecraft anti-unwinding attitude control with actuator nonlinearities and velocity limit[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(10):2042-2050.
[112] HU Q L, TAN X. Unified attitude control for spacecraft under velocity and control constraints[J]. Aerospace Science and Technology, 2017, 67:257-264.
[113] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1):19-23. HAN J Q. Auto-disturbances-rejection controller and its applications[J]. Control and Decision, 1998, 13(1):19-23(in Chinese).
[114] 杨飞, 谈树萍, 薛文超, 等. 饱和约束测量扩张状态滤波与无拖曳卫星位姿自抗扰控制[J]. 自动化学报, 2020, 46(11):2337-2349. YANG F, TAN S P, XUE W C, et al. Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites[J]. Acta Automatica Sinica, 2020, 46(11):2337-2349(in Chinese).
[115] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference. Piscataway:IEEE Press, 2003:4989-4996.
[116] BAI Y L, BIGGS J D, ZAZZERA F B, et al. Adaptive attitude tracking with active uncertainty rejection[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2):550-558.
[117] OHISHI K, NAKAO M, OHNISHI K, et al. Microprocessor-controlled DC motor for load-insensitive position servo system[J]. IEEE Transactions on Industrial Electronics, 1987, IE-34(1):44-49.
[118] CHEN W H, BALLANCE D J, GAWTHROP P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4):932-938.
[119] SUN L, ZHENG Z W. Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10):7994-8002.
[120] ZHANG J H, ZHAO W S, SHEN G H, et al. Disturbance observer-based adaptive finite-time attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(11):6606-6613.
[121] ZHU W W, ZONG Q, TIAN B L, et al. Disturbance observer-based active vibration suppression and attitude control for flexible spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(2):893-901.
[122] YAN R D, WU Z. Super-twisting disturbance observer-based finite-time attitude stabilization of flexible space-craft subject to complex disturbances[J]. Journal of Vi-bration and Control, 2019, 25(5):1008-1018.
[123] HE T F, WU Z. Iterative learning disturbance observer based attitude stabilization of flexible spacecraft subject to complex disturbances and measurement noises[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(9):1576-1587.
[124] GUO L. Composite Hierarchical anti-disturbance control for systems with multiple disturbances:survey and over-view[C]//Proceedings of the 30th Chinese Control Con-ference, 2011:6193-6198.
[125] GUO L, CHEN W H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach[J]. International Journal of Robust and Nonlinear Control, 2005, 15(3):109-125.
[126] CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based control and related methods-An overview[J]. IEEE Transactions on industrial electronics, 2015, 63(2):1083-1095.
[127] ZHU Y K, GUO L, QIAO J Z, et al. An enhanced anti-disturbance attitude control law for flexible spacecrafts subject to multiple disturbances[J]. Control Engineering Practice, 2019, 84:274-283.
[128] TAFAZOLI M. A study of on-orbit spacecraft failures[J]. Acta Astronautica, 2009, 64(2-3):195-205.
[129] ZHANG Y M, JIANG J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. IFAC Proceedings Volumes, 2003, 36(5):257-268.
[130] YIN S, XIAO B, DING S X, et al. A review on recent development of spacecraft attitude fault tolerant control system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3311-3320.
[131] CAI W C, LIAO X H, SONG Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5):1456-1463.
[132] SHEN Q, WANG D W, ZHU S Q, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2390-2405.
[133] XIAO Y, DE RUITER A, YE D, et al. Adaptive fault-tolerant attitude tracking control for flexible spacecraft with guaranteed performance bounds[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3):1922-1940.
[134] HU Q L, SHAO X D, GUO L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1):331-341.
[135] SHAO X D, HU Q L, SHI Y, et al. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2):574-582.
[136] 沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报, 2020, 41(6):647-656. SHEN Y, LI L L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41(6):647-656(in Chinese).
[137] HU Q L, XIAO B, LI B, et al. Robust fault-tolerant attitude control[C]//Fault-Tolerant Attitude Control of Spacecraft. Amsterdam:Elsevier, 2021:37-80.
[138] SHEN Q, YUE C F, GOH C H, et al. Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5):3763-3772.
[139] LI Y D, HU Q L, SHAO X D. Neural network-based fault diagnosis for spacecraft with single-gimbal control moment gyros[J]. Chinese Journal of Aeronautics, 2022, 35(7):261-273.
[140] LI B, HU Q L, YU Y B, et al. Observer-based fault-tolerant attitude control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5):2572-2582.
[141] RAN D C, CHEN X Q, DE RUITER A, et al. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels[J]. Acta Astronautica, 2018, 145:501-514.
[142] HU Q L, ZHANG X X, NIU G L. Observer-based fault tolerant control and experimental verification for rigid spacecraft[J]. Aerospace Science and Technology, 2019, 92:373-386.
[143] GUI H C. Observer-based fault-tolerant spacecraft attitude tracking using sequential Lyapunov analyses[J]. IEEE Transactions on Automatic Control, 2021, 66(12):6108-6114.
[144] SHEN Q, WANG D W, ZHU S Q, et al. Inertia-free fault-tolerant spacecraft attitude tracking using control allocation[J]. Automatica, 2015, 62:114-121.
[145] SHEN Q, WANG D W, ZHU S Q, et al. Robust control allocation for spacecraft attitude tracking under actuator faults[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3):1068-1075.
[146] LI B, HU Q L, MA G F, et al. Fault-tolerant attitude stabilization incorporating closed-loop control allocation under actuator failure[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4):1989-2000.
[147] HU Q L, TAN X, AKELLA M R. Closed-loop-based control allocation for spacecraft attitude stabilization with actuator fault[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4):944-953.
[148] YANG C D, SUN Y P. Mixed H2/H∞ state-feedback design for microsatellite attitude control[J]. Control Engineering Practice, 2002, 10(9):951-970.
[149] SUN L, HUO W. Adaptive robust control with L2-gain performance for autonomous spacecraft proximity maneuvers[J]. Journal of Spacecraft and Rockets, 2016, 53(2):249-257.
[150] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099.
[151] 魏才盛, 罗建军, 殷泽阳. 航天器姿态预设性能控制方法综述[J]. 宇航学报, 2019, 40(10):1167-1176. WEI C S, LUO J J, YIN Z Y. A review of prescribed performance control for spacecraft attitude[J]. Journal of Astronautics, 2019, 40(10):1167-1176(in Chinese).
[152] WEI C S, CHEN Q F, LIU J, et al. An overview of prescribed performance control and its application to spacecraft attitude system[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2021, 235(4):435-447.
[153] LIU M M, SHAO X D, MA G F. Appointed-time fault-tolerant attitude tracking control of spacecraft with double-level guaranteed performance bounds[J]. Aerospace Science and Technology, 2019, 92:337-346.
[154] HUANG X W, DUAN G R. Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance[J]. ISA Transactions, 2020, 98:161-172.
[155] BECHLIOULIS C P, ROVITHAKIS G A. A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems[J]. Automatica, 2014, 50(4):1217-1226.
[156] ZHOU Z G, ZHANG Y A, SHI X N, et al. Robust attitude tracking for rigid spacecraft with prescribed transient performance[J]. International Journal of Control, 2017, 90(11):2471-2479.
[157] 殷泽阳, 罗建军, 魏才盛, 等. 非合作目标接近与跟踪的低复杂度预设性能控制[J]. 宇航学报, 2017, 38(8):855-864. YIN Z Y, LUO J J, WEI C S, et al. Low-complexity prescribed performance control for approaching and tracking a non-cooperative target[J]. Journal of Astronautics, 2017, 38(8):855-864(in Chinese).
[158] LUO J J, YIN Z Y, WEI C S, et al. Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking[J]. Aerospace Science and Technology, 2018, 74:173-183.
[159] YIN Z Y, SULEMAN A, LUO J J, et al. Appointed-time prescribed performance attitude tracking control via double performance functions[J]. Aerospace Science and Technology, 2019, 93:105337.
[160] HU Y B, GENG Y H, WU B L, et al. Model-free prescribed performance control for spacecraft attitude tracking[J]. IEEE Transactions on Control Systems Technology, 2021, 29(1):165-179.
[161] YONG K N, CHEN M, SHI Y, et al. Flexible performance-based robust control for a class of nonlinear systems with input saturation[J]. Automatica, 2020, 122:109268.
[162] TSIOTRAS P. Further passivity results for the attitude control problem[J]. IEEE Transactions on Automatic Control, 1998, 43(11):1597-1600.
[163] AKELLA M R, THAKUR D, MAZENC F. Partial Lyapunov strictification:smooth angular velocity observers for attitude tracking control[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(3):442-451.
[164] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1680-1685.
[165] WU B L, SHEN Q, CAO X B. Event-triggered attitude control of spacecraft[J]. Advances in Space Research, 2018, 61(3):927-934.
[166] 石永霞, 胡庆雷, 邵小东. 角速度受限下航天器姿态机动事件触发控制[J]. 中国科学:信息科学, 2022, 52(3):506-520. SHI Y X, HU Q L, SHAO X D. Event-triggered attitude maneuver control of spacecraft under angular velocity constraints[J]. Scientia Sinica (Informationis), 2022, 52(3):506-520(in Chinese).
[167] 刘付成. 人工智能在航天器控制中的应用[J]. 飞控与探测, 2018, 1(1):16-25. LIU F C. Application of artificial intelligence in spacecraft[J]. Flight Control & Detection, 2018, 1(1):16-25(in Chinese).
[168] SHIROBOKOV M, TROFIMOV S, OVCHINNIKOV M. Survey of machine learning techniques in spacecraft control design[J]. Acta Astronautica, 2021, 186:87-97.
[169] HU Q L, XIAO B. Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation[J]. Aerospace Science and Technology, 2012, 23(1):63-74.