固体力学与飞行器总体设计

矩形板本征值问题的封闭解析解法综述

  • 邢誉峰 ,
  • 李根 ,
  • 袁冶
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100083

收稿日期: 2022-04-28

  修回日期: 2022-05-26

  网络出版日期: 2022-06-17

基金资助

国家自然科学基金(12172023,11872090)

A review of closed-form analytical solution methods for eigenvalue problems of rectangular plates

  • XING Yufeng ,
  • LI Gen ,
  • YUAN Ye
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2022-04-28

  Revised date: 2022-05-26

  Online published: 2022-06-17

Supported by

National Natural Science Foundation of China (12172023, 11872090)

摘要

矩形板的自由振动和本征屈曲等本征值问题一直受到学者们的关注和研究。本文总结了已有的矩形板本征值问题的封闭解法,包括Navier方法、Levy方法、分离变量(SOV)方法和Kantorovich-Krylov方法。对于每一种方法,首先介绍了它的基本思想、发展历程以及应用范围,之后以矩形一阶剪切板的自由振动问题为例,详述了各种方法的求解过程。本文重点介绍近20年来发展的各类SOV方法,包括直接、变分、迭代、改进和扩展SOV方法。最后,借助数值结果,对各种封闭解法进行了总结与比较。对于对边简支矩形板,各种方法皆可以得到精确解;对于具有其他齐次边界的矩形板,SOV方法和Kantorovich-Krylov方法都可以获得高精度解。

本文引用格式

邢誉峰 , 李根 , 袁冶 . 矩形板本征值问题的封闭解析解法综述[J]. 航空学报, 2022 , 43(10) : 527333 -527333 . DOI: 10.7527/S1000-6893.2022.27333

Abstract

The eigenvalue problems of rectangular plates, including the free vibration and eigenbuckling problems, have been attracting considerable interest of researchers. This paper reviews the available closed-form solution methods for the eigenvalue problems of rectangular plates, which are the Navier, Levy, Separation-of-Variable (SOV) and Kantorovich-Krylov methods. For each method, the basic idea, development history and application scopes are introduced first, and the free vibration problem of a rectangular first-order shear deformation plate is taken as the example to illustrate the solution procedures of each method. Especially, this paper focuses on various SOV methods developed in recent 20 years, including the direct, variational, iterative, improved and extended SOV methods. Finally, all the reviewed methods are summarized and compared from various perspectives with the help of numerical result. For Levy-type of plates, all methods can provide the exact solutions. For plates with other homogeneous boundary conditions, both Kantorovich-Krylov method and SOV methods can produce highly-accurate solutions.

参考文献

[1] NAVIER C L M H. Extrait des recherches sur la flexion des plans elastiques[J]. Bulletin des Sciences par la Société Philomathique de Paris, 1823, 5:95-102
[2] NAVIER C L M H. Résumé des leçons données `a l'école royale des ponts et chaussées sur l'application de la mécanique `a l'établissement des constructions et des machines[M]. Didot, 1826.
[3] NAVIER C L M H. Remarques sur l'Article de M. Poisson, insére dans le Cahier d'août[J]. Annales de Chimie et de Physique, 1829, 39:145-151.
[4] LEVY M. Sur L'équilibre élastique d'une plaque rectangulaire[J]. Comptes Rendus de l'Académie des Sciences, 1899, 129:535-539.
[5] LEVY M. Mémoire sur la théorie des plaques élastique planes[J]. Journal de Mathématiques Pures et Appliquées, 1877, 30:219-306.
[6] MINDLIN R D, SCHACKNOW A, DERESIEWICZ H. Flexural vibrations of rectangular plates[J]. Journal of Applied Mechanics, 1956, 23(3):430-436.
[7] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics, 1984, 51(4):745-752.
[8] BHIMARADDI A, STEVENS L K. A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates[J]. Journal of Applied Mechanics, 1984, 51(1):195-198.
[9] LU P, ZHANG P Q, LEE H P, et al. Non-local elastic plate theories[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 463(2088):3225-3240.
[10] AGHABABAEI R, REDDY J N. Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates[J]. Journal of Sound and Vibration, 2009, 326(1-2):277-289.
[11] RAGHU P, PREETHI K, RAJAGOPAL A, et al. Nonlocal third-order shear deformation theory for analysis of laminated plates considering surface stress effects[J]. Composite Structures, 2016, 139:13-29.
[12] WANG C M. Natural frequencies formula for simply supported mindlin plates[J]. Journal of Vibration and Acoustics, 1994, 116(4):536-540.
[13] WANG C M, KITIPORNCHAI S, REDDY J N. Relationship between vibration frequencies of reddy and Kirchhoff polygonal plates with simply supported edges[J]. Journal of Vibration and Acoustics, 2000, 122(1):77-81.
[14] SRINIVAS S, RAO A K. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates[J]. International Journal of Solids and Structures, 1970, 6(11):1463-1481.
[15] SRINIVAS S, JOGA RAO C V, RAO A K. An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates[J]. Journal of Sound and Vibration, 1970, 12(2):187-199.
[16] WITTRICK W H. Analytical, three-dimensional elasticity solutions to some plate problems, and some observations on Mindlin's plate theory[J]. International Journal of Solids and Structures, 1987, 23(4):441-464.
[17] FAN J R, YE J Q. An exact solution for the statics and dynamics of laminated thick plates with orthotropic layers[J]. International Journal of Solids and Structures, 1990, 26(5-6):655-662.
[18] HOSSEINI-HASHEMI S, SALEHIPOUR H, ATASHIPOUR S R, et al. On the exact in-plane and out-of-plane free vibration analysis of thick functionally graded rectangular plates:Explicit 3-D elasticity solutions[J]. Composites Part B:Engineering, 2013, 46:108-115.
[19] 卿光辉, 张小欢. 对边简支对边滑支三维矩形层合板的精确解[J]. 科学技术与工程, 2016, 16(3):1-5, 21. QING G H, ZHANG X H. Exact solutions for rectangular laminates in cylindrical bending by three-dimensional state space approach[J]. Science Technology and Engineering, 2016, 16(3):1-5, 21 (in Chinese).
[20] BERT C W, MALIK M. Frequency equations and modes of free vibrations of rectangular plates with various edge conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 1994, 208(5):307-319.
[21] HASHEMI S H, ARSANJANI M. Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates[J]. International Journal of Solids and Structures, 2005, 42(3-4):819-853.
[22] HOSSEINI-HASHEMI S, FADAEE M, ROKNI DAMAVANDI TAHER H. Exact solutions for free flexural vibration of Lévy-type rectangular thick plates via third-order shear deformation plate theory[J]. Applied Mathematical Modelling, 2011, 35(2):708-727.
[23] HOSSEINI-HASHEMI S, ZARE M, NAZEMNEZHAD R. An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity[J]. Composite Structures, 2013, 100:290-299.
[24] HOSSEINI-HASHEMI S, KERMAJANI M, NAZEMNEZHAD R. An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory[J]. European Journal of Mechanics-A/Solids, 2015, 51:29-43.
[25] HOSSEINI-HASHEMI S, FADAEE M, ATASHIPOUR S R. A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates[J]. International Journal of Mechanical Sciences, 2011, 53(1):11-22.
[26] HOSSEINI-HASHEMI S, TAHER H R D, AKHAVAN H, et al. Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory[J]. Applied Mathematical Modelling, 2010, 34(5):1276-1291.
[27] HOSSEINI-HASHEMI S, FADAEE M, ATASHIPOUR S R. Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure[J]. Composite Structures, 2011, 93(2):722-735.
[28] ZARE M, NAZEMNEZHAD R, HOSSEINI-HASHEMI S. Natural frequency analysis of functionally graded rectangular nanoplates with different boundary conditions via an analytical method[J]. Meccanica, 2015, 50(9):2391-2408.
[29] BAFERANI A H, SAIDI A R, EHTESHAMI H. Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation[J]. Composite Structures, 2011, 93(7):1842-1853.
[30] REZAEI A S, SAIDI A R. Exact solution for free vibration of thick rectangular plates made of porous materials[J]. Composite Structures, 2015, 134:1051-1060.
[31] XIANG Y. Vibration of rectangular Mindlin plates resting on non-homogenous elastic foundations[J]. International Journal of Mechanical Sciences, 2003, 45(6-7):1229-1244.
[32] ZHANG L W, SONG Z G, LIEW K M. State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory[J]. Composite Structures, 2015, 134:989-1003.
[33] XING Y F, XIANG W. Analytical solution methods for eigenbuckling of symmetric cross-ply composite laminates[J]. Chinese Journal of Aeronautics, 2017, 30(1):282-291.
[34] GORMAN D J. Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported[J]. Journal of Sound and Vibration, 2006, 294(1-2):131-161.
[35] HOSSEINI HASHEMI S, ATASHIPOUR S R, FADAEE M. An exact analytical approach for in-plane and out-of-plane free vibration analysis of thick laminated transversely isotropic plates[J]. Archive of Applied Mechanics, 2012, 82(5):677-698.
[36] XING Y F, LI G, YUAN Y. A review of the analytical solution methods for the eigenvalue problems of rectangular plates[J]. International Journal of Mechanical Sciences, 2022, 221:107171.
[37] XING Y F, LIU B. New exact solutions for free vibrations of rectangular thin plates by symplectic dual method[J]. Acta Mechanica Sinica, 2008, 25(2):265-270.
[38] XING Y F, LIU B. New exact solutions for free vibrations of thin orthotropic rectangular plates[J]. Composite Structures, 2009, 89(4):567-574.
[39] XING Y F, LIU B. Exact solutions for the free in-plane vibrations of rectangular plates[J]. International Journal of Mechanical Sciences, 2009, 51(3):246-255.
[40] LIU B, XING Y F. Exact solutions for free in-plane vibrations of rectangular plates[J]. Acta Mechanica Solida Sinica, 2011, 24(6):556-567.
[41] LIU B, XING Y F. Comprehensive exact solutions for free in-plane vibrations of orthotropic rectangular plates[J]. European Journal of Mechanics-A/Solids, 2011, 30(3):383-395.
[42] 徐腾飞, 邢誉峰. 弹性地基上矩形薄板自由振动的精确解[J]. 工程力学, 2014, 31(5):43-48. XU T F, XING Y F. Exact solutions for free vibrations of rectangular thin plates on the winkler foundation[J]. Engineering Mechanics, 2014, 31(5):43-48 (in Chinese).
[43] 邢誉峰, 徐腾飞. 双参数弹性地基上正交各向异性矩形薄板自由振动的精确解[J]. 振动工程学报, 2014, 27(2):269-274. XING Y F, XU T F. Exact solutions for free vibrations of orthotropic rectangulr thin plates on elastic foundation of two parameters[J]. Journal of Vibration Engineering, 2014, 27(2):269-274 (in Chinese).
[44] XING Y F, XU T F. Solution methods of exact solutions for free vibration of rectangular orthotropic thin plates with classical boundary conditions[J]. Composite Structures, 2013, 104:187-195.
[45] 汪星明, 刘波, 邢誉峰. 正交各向异性矩形薄板稳定问题的直接解法[J]. 北京航空航天大学学报, 2010, 36(8):949-952. WANG X M, LIU B, XING Y F. Separation of variables solutions of stability problems of orthotropic rectangular thin plates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8):949-952 (in Chinese).
[46] XING Y F, LIU B. Closed form solutions for free vibrations of rectangular Mindlin plates[J]. Acta Mechanica Sinica, 2009, 25(5):689-698.
[47] XING Y F, LIU B. Characteristic equations and closed-form solutions for free vibrations of rectangular mindlin plates[J]. Acta Mechanica Solida Sinica, 2009, 22(2):125-136.
[48] LIU B, XING Y F. Exact solutions for free vibrations of orthotropic rectangular Mindlin plates[J]. Composite Structures, 2011, 93(7):1664-1672.
[49] LIU B, XING Y F, REDDY J N. Exact compact characteristic equations and new results for free vibrations of orthotropic rectangular Mindlin plates[J]. Composite Structures, 2014, 118:316-321.
[50] XING Y F, XIANG W. Closed-form solutions for eigenbuckling of rectangular mindlin plate[J]. International Journal of Structural Stability and Dynamics, 2016, 16(8):1550079.
[51] XU T F, XING Y F. Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation[J]. Acta Mechanica Sinica, 2016, 32(6):1088-1103.
[52] XING Y F, WANG Z K, XU T F. Closed-form analytical solutions for free vibration of rectangular functionally graded thin plates in thermal environment[J]. International Journal of Applied Mechanics, 2018, 10(3):1850025.
[53] XING Y F, WANG Z K. Closed form solutions for thermal buckling of functionally graded rectangular thin plates[J]. Applied Sciences, 2017, 7(12):1256.
[54] MURMU T, PRADHAN S C. Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2009, 41(8):1628-1633.
[55] LIU B, XING Y F, QATU M S, et al. Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells[J]. Composite Structures, 2012, 94(2):484-493.
[56] XING Y F, LIU B, XU T F. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions[J]. International Journal of Mechanical Sciences, 2013, 75:178-188.
[57] BAHRAMI A, BAHRAMI M N, ILKHANI M R. Comments on "New exact solutions for free vibrations of thin orthotropic rectangular plates"[J]. Composite Structures, 2014, 107:745-746.
[58] XING Y F, XU T F, LIU B. Comments to comments on "New exact solutions for free vibrations of thin orthotropic rectangular plates"[J]. Composite Structures, 2014, 107:747.
[59] XING Y F, SUN Q Z, LIU B, et al. The overall assessment of closed-form solution methods for free vibrations of rectangular thin plates[J]. International Journal of Mechanical Sciences, 2018, 140:455-470.
[60] WANG Z K, XING Y F, SUN Q Z. Highly accurate closed-form solutions for the free in-plane vibration of rectangular plates with arbitrary homogeneous boundary conditions[J]. Journal of Sound and Vibration, 2020, 470:115166.
[61] WANG Z K, XING Y F, SUN Q Z, et al. Highly accurate closed-form solutions for free vibration and eigenbuckling of rectangular nanoplates[J]. Composite Structures, 2019, 210:822-830.
[62] XING Y F, WANG Z K. An improved separation-of-variable method for the free vibration of orthotropic rectangular thin plates[J]. Composite Structures, 2020, 252:112664.
[63] XING Y F, WANG Z K. An extended separation-of-variable method for the free vibration of orthotropic rectangular thin plates[J]. International Journal of Mechanical Sciences, 2020, 182:105739.
[64] YUAN Y, XING Y F. An extended separation-of-variable method for eigenbuckling of orthotropic rectangular thin plates[J]. Composite Structures, 2021, 259:113239.
[65] LI G, XING Y F, WANG Z K. An extended separation-of-variable method for free vibration of rectangular mindlin plates[J]. International Journal of Structural Stability and Dynamics, 2021, 21(11):2150154.
[66] LI G, XING Y F. An extended separation-of-variable method for free vibration of rectangular Reddy plates[J]. Composite Structures, 2022, 289:115469.
[67] LI G, XING Y F, WANG Z K. Closed-form solutions for free vibration of rectangular nonlocal Mindlin plates with arbitrary homogeneous boundary conditions[J]. Composites Part C:Open Access, 2021, 6:100193.
[68] WANG Z K, XING Y F, LI G. Closed-form solutions for the free vibrations of three-dimensional orthotropic rectangular plates[J]. International Journal of Mechanical Sciences, 2021, 199:106398.
[69] WANG Z K, XING Y F. An extended separation-of-variable method for free vibrations of orthotropic rectangular thin plate assemblies[J]. Thin-Walled Structures, 2021, 169:108491.
[70] KANTOROVICH L V, KRYLOV V I. Approximate methods of higher analysis[M]. New York:Interscience, 1958.
[71] LAURA P A A, CORTÍNEZ V H. Optimization of the kantorovich method when solving eigenvalue problems[J]. Journal of Sound and Vibration, 1988, 122(2):396-398.
[72] CORTINEZ V H, LAURA P A A. Further optimization of the Kantorovich method when applied to vibrations problems[J]. Applied Acoustics, 1988, 25(3):217-221.
[73] BHAT R B, LAURA P A A, GUTIERREZ R G, et al. Numerical experiments on the determination of natural frequencies of transverse vibrations of rectangular plates of non-uniform thickness[J]. Journal of Sound and Vibration, 1990, 138(2):205-219.
[74] CORTINEZ V H, LAURA P A A. Analysis of vibrating rectangular plates of discontinuously varying thickness by means of the Kantorovich extended method[J]. Journal of Sound and Vibration, 1990, 137(3):457-461.
[75] SONZOGNI V E, IDELSOHN S R, LAURA P A A, et al. Free vibrations of rectangular plates of exponentially varying thickness and with a free edge[J]. Journal of Sound and Vibration, 1990, 140(3):513-522.
[76] CORTINEZ V H, LAURA P A A. Vibrations of non-homogeneous rectangular membranes[J]. Journal of Sound and Vibration, 1992, 156(2):217-225.
[77] KERR A D. An extension of the Kantorovich method[J]. Quarterly of Applied Mathematics, 1968, 26(2):219-229.
[78] KERR A D. An extended Kantorovich method for the solution of eigenvalue problems[J]. International Journal of Solids and Structures, 1969, 5(6):559-572.
[79] KERR A D, ALEXANDER H. An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate[J]. Acta Mechanica, 1968, 6(2-3):180-196.
[80] DALAEI M, KERR A D. Natural vibration analysis of clamped rectangular orthotropic plates[J]. Journal of Sound and Vibration, 1996, 189(3):399-406.
[81] JONES R, MILNE B J. Application of the extended Kantorovich method to the vibration of clamped rectangular plates[J]. Journal of Sound and Vibration, 1976, 45(3):309-316.
[82] BERCIN A. Free vibration solution for clamped orthotropic plates using the Kantorovich method[J]. Journal of Sound and Vibration, 1996, 196(2):243-247.
[83] BHAT R B, SINGH J, MUNDKUR G. Plate characteristic functions and natural frequencies of vibration of plates by iterative reduction of partial differential equation[J]. Journal of Vibration and Acoustics, 1993, 115(2):177-181.
[84] SAKATA T, TAKAHASHI K, BHAT R B. Natural frequencies of orthotropic rectangular plates obtained by iterative reduction of the partial differential equation[J]. Journal of Sound and Vibration, 1996, 189(1):89-101.
[85] RAJALINGHAM C, BHAT R B, XISTRIS G D. Closed form approximation of vibration modes of rectangular cantilever plates by the variational reduction method[J]. Journal of Sound and Vibration, 1996, 197(3):263-281.
[86] RAJALINGHAM C, BHAT R B, XISTRIS G D. Vibration of rectangular plates by reduction of the plate partial differential equation into simultaneous ordinary differential equations[J]. Journal of Sound and Vibration, 1997, 203(1):169-180.
[87] 钟阳, 周福霖, 张永山. 弹性地基上四边自由矩形薄板振动分析的Kantorovich法[J]. 振动与冲击, 2007, 26(3):33-36, 155. ZHONG Y, ZHOU F L, ZHANG Y S. Vibration analysis of a thin plate on winkler foundation with completely free boundary by Kantorovich method[J]. Journal of Vibration and Shock, 2007, 26(3):33-36, 155 (in Chinese).
[88] CHANG D C, WANG G, WERELEY N M. Analysis and applications of extended kantorovich-Krylov method[J]. Applicable Analysis, 2003, 82(7):713-740.
[89] FALLAH A, AGHDAM M M, KARGARNOVIN M H. Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method[J]. Archive of Applied Mechanics, 2013, 83(2):177-191.
[90] MOROZOV E V, LOPATIN A V. Fundamental frequency of the CCCF composite sandwich plate[J]. Composite Structures, 2010, 92(11):2747-2757.
[91] SHUFRIN I, EISENBERGER M. Stability and vibration of shear deformable plates:First order and higher order analyses[J]. International Journal of Solids and Structures, 2005, 42(3-4):1225-1251.
[92] WEBBER J P H. An iterative technique for minimising a double integral with applications in elasticity[J]. The Journal of the Royal Aeronautical Society, 1967, 71(680):573-575.
[93] WEBBER J P H. On the extension of the Kantorovich method[J]. The Aeronautical Journal, 1970, 74(710):146-149.
[94] 金焱, 袁驷. 延拓Kantorovich法解薄扁壳弯曲问题[J]. 土木工程学报, 1998, 31(4):38-46. JIN Y, YUAN S. Computation of bending problems of thin shallow shells using the extended kantorovich method[J]. China Civil Engineering Journal, 1998, 31(4):38-46 (in Chinese).
[95] YUAN S, JIN Y, WILLIAMS F W. Bending analysis of mindlin plates by extended kantorovich method[J]. Journal of Engineering Mechanics, 1998, 124(12):1339-1345.
[96] YUAN S, JIN Y. Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method[J]. Computers & Structures, 1998, 66(6):861-867.
[97] 董聪. 关于延拓Kantorovich法的讨论[J]. 土木工程学报, 1999, 32(6):72-74. DONG C. Discussion on the continuation of Kantorovich method[J]. China Civil Engineering Journal, 1999, 32(6):72-74 (in Chinese).
[98] 袁驷. 对"关于延拓Kantorovich法的讨论"的答复[J]. 土木工程学报, 1999, 32(6):74. YUAN S. Reply to "Discussion on continuation of Kantorovich method"[J]. China Civil Engineering Journal, 1999, 32(6):74 (in Chinese).
[99] SINGHATANADGID P, WETCHAYANON T. Vibration analysis of laminated plates with various boundary conditions using extended Kantorovich method[J]. Structural Engineering and Mechanics, 2014, 52(1):115-136.
[100] EISENBERGER M, SHUFRIN I. The extended Kantorovich method for vibration analysis of plates[M]//Analysis and Design of Plated Structures. Amsterdam:Elsevier, 2007:192-218.
[101] RAJABI K, HOSSEINI-HASHEMI S. Size-dependent free vibration analysis of first-order shear-deformable orthotropic nanoplates via the nonlocal strain gradient theory[J]. Materials Research Express, 2017, 4(7):075054.
[102] CHANG D C, WANG G, WERELEY N M. A Generalized Kantorovich method and its application to free in-plane plate vibration problem[J]. Applicable Analysis, 2002, 80(3-4):493-523
[103] WANG G, WERELEY N M. Free in-plane vibration of rectangular plates[J]. AIAA Journal, 2002, 40(5):953-959.
[104] ROSTAMI H, RAHBAR RANJI A, BAKHTIARI-NEJAD F. Free in-plane vibration analysis of rotating rectangular orthotropic cantilever plates[J]. International Journal of Mechanical Sciences, 2016, 115-116:438-456.
[105] EISENBERGER M, ALEXANDROV A. Buckling loads of variable thickness thin isotropic plates[J]. Thin-Walled Structures, 2003, 41(9):871-889.
[106] UNGBHAKORN V, SINGHATANADGID P. Buckling analysis of symmetrically laminated composite plates by the extended Kantorovich method[J]. Composite Structures, 2006, 73(1):120-128.
[107] GRIMM T R, GERDEEN J C. Instability analysis of thin rectangular plates using the kantorovich method[J]. Journal of Applied Mechanics, 1975, 42(1):110-114.
[108] LEE J M, KIM K C. Vibration analysis of rectangular isotropic thick plates using mindlin plate characteristic functions[J]. Journal of Sound and Vibration, 1995, 187(5):865-867.
[109] LEE J M, CHUNG J H, CHUNG T Y. Free vibration analysis of symmetrically laminated composite rectangular plates[J]. Journal of Sound and Vibration, 1997, 199(1):71-85.
[110] WANG J, LIU B, DU J K, et al. Approximate frequencies of rectangular quartz plates vibrating at thickness-shear modes with free edges[C]//2012 IEEE International Frequency Control Symposium Proceedings. Piscataway:IEEE Press, 2012:1-4.
[111] SHUFRIN I, EISENBERGER M. Vibration of shear deformable plates with variable thickness-first-order and higher-order analyses[J]. Journal of Sound and Vibration, 2006, 290(1-2):465-489.
[112] ROSTAMI H, BAKHTIARI-NEJAD F, RANJI A R. Vibration of the rotating rectangular orthotropic Mindlin plates with an arbitrary stagger angle[J]. Journal of Vibration and Control, 2019, 25(6):1194-1209.
[113] RUOCCO E, MALLARDO V, MINUTOLO V, et al. Analytical solution for buckling of Mindlin plates subjected to arbitrary boundary conditions[J]. Applied Mathematical Modelling, 2017, 50:497-508.
[114] SHUFRIN I, EISENBERGER M. Stability of variable thickness shear deformable plates-first order and high order analyses[J]. Thin-Walled Structures, 2005, 43(2):189-207.
[115] KAPURIA S, KUMARI P. Extended kantorovich method for three-dimensional elasticity solution of laminated composite structures in cylindrical bending[J]. Journal of Applied Mechanics, 2011, 78(6):061004.
[116] KAPURIA S, KUMARI P. Multiterm extended kantorovich method for three-dimensional elasticity solution of laminated plates[J]. Journal of Applied Mechanics, 2012, 79(6):061018.
[117] TAHANI M, ANDAKHSHIDEH A. Interlaminar stresses in thick rectangular laminated plates with arbitrary laminations and boundary conditions under transverse loads[J]. Composite Structures, 2012, 94(5):1793-1804.
[118] ANDAKHSHIDEH A, TAHANI M. Interlaminar stresses in general thick rectangular laminated plates under in-plane loads[J]. Composites Part B:Engineering, 2013, 47:58-69.
[119] KAPURIA S, KUMARI P. Extended Kantorovich method for coupled piezoelasticity solution of piezolaminated plates showing edge effects[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2013, 469(2151):20120565.
[120] KUMARI P, KAPURIA S, RAJAPAKSE R K N D. Three-dimensional extended Kantorovich solution for Levy-type rectangular laminated plates with edge effects[J]. Composite Structures, 2014, 107:167-176.
[121] KUMARI P, BEHERA S. Three-dimensional free vibration analysis of levy-type laminated plates using multi-term extended Kantorovich method[J]. Composites Part B:Engineering, 2017, 116:224-238.
[122] 林永静, 袁驷. 张量积形式的三维延拓Kantorovich法[J]. 工程力学, 2012, 29(5):8-12. LIN Y J, YUAN S. Three-dimensional extended kantorovich method of tensor product form[J]. Engineering Mechanics, 2012, 29(5):8-12 (in Chinese).
[123] 林永静. 三维延拓Kantorovich法的迭代不收敛现象[J]. 温州职业技术学院学报, 2016, 16(3):47-50. LIN Y J. Iteration non-convergence phenomenon of three-dimensional extended kantorovich method[J]. Journal of Wenzhou Vocational & Technical College, 2016, 16(3):47-50 (in Chinese).
[124] HASSAN AHMED HASSAN A, KURGAN N. Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method[J]. Engineering Science and Technology, an International Journal, 2020, 23(4):788-800.
[125] MOUSAVI S M, TAHANI M. Analytical solution for bending of moderately thick radially functionally graded sector plates with general boundary conditions using multi-term extended Kantorovich method[J]. Composites Part B:Engineering, 2012, 43(3):1405-1416.
[126] MOUSAVI S M, TAHANI M. Bending of moderately thick annular sector plates with variable thickness and general boundary conditions using extended knatorovich method[J]. Journal of Engineering Mechanics, 2015, 141(8):04015021.
[127] SINGHATANADGID P, SINGHANART T. The Kantorovich method applied to bending, buckling, vibration, and 3D stress analyses of plates:A literature review[J]. Mechanics of Advanced Materials and Structures, 2019, 26(2):170-188.
[128] MINDLIN R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[J]. Journal of Applied Mechanics, 1951, 18(1):31-38.
[129] REISSNER E. The effect of transverse shear deformation on the bending of elastic plates[J]. Journal of Applied Mechanics, 1945, 12(2):A69-A77.
[130] LIEW K M, XIANG Y, KITIPORNCHAI S. Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundary conditions[J]. Computers & Structures, 1993, 49(1):1-29.
文章导航

/