电子电气工程与控制

临空信息网络信道建模与动态部署技术展望

  • 曹先彬 ,
  • 杨朋
展开
  • 北京航空航天大学 电子信息工程学院 临空信息系统先进技术 工信部重点实验室, 北京 100083

收稿日期: 2022-04-28

  修回日期: 2022-06-07

  网络出版日期: 2022-06-17

基金资助

国家自然科学基金(91738301,61827901)

Prospects of channel modeling and dynamic deployment technologies of near space information network

  • CAO Xianbin ,
  • YANG Peng
Expand
  • Key Laboratory of Advanced Technology of Near Space Information System, School of Electronic and Information Engineering, Beihang University, Beijing 100083, China

Received date: 2022-04-28

  Revised date: 2022-06-07

  Online published: 2022-06-17

Supported by

National Natural Science Foundation of China (91738301, 61827901)

摘要

临空信息网络具有高时效部署和能实现广域通信覆盖与局部能力增强的优势,能助力提升我国开展公共安全应急响应与救灾、对地观测等重大任务的能力。与地面无线网络和天基网络相比,临空信息网络信道传播特性新,拓扑立体多层,平台多异质且共享空域,导致地面无线网络和天基网络的信道建模与动态部署方法不适用于临空信息网络。为发挥临空信息网络的优势,亟需攻关临空信息网络信道建模与动态部署关键技术。剖析了临空信息网络在信道建模与动态部署研究方面面临的重大挑战,并展望了应对挑战的关键技术。此外,在最后展望了临空信息网络未来的其他重点研究方向。

本文引用格式

曹先彬 , 杨朋 . 临空信息网络信道建模与动态部署技术展望[J]. 航空学报, 2022 , 43(10) : 527332 -527332 . DOI: 10.7527/S1000-6893.2022.27332

Abstract

The near space information network has the advantages of high time-effective deployment, wide-area communication coverage and local capacity enhancement, and can help enhance the ability of China to carry out major tasks such as public safety emergency response and disaster relief, and earth observation. The near space information network has novel channel propagation characteristics, a three-dimensional and multi-layer topology, and multi-heterogeneous and airspace-shared platforms, which make the channel modeling and dynamic deployment approaches of terrestrial wireless networks and space-based networks inapplicable to the near space information network. To take advantage of the near space information network, it is urgent to tackle the key technologies of channel modeling and dynamic deployment of the near space information network. This paper analyzes the major challenges in channel modeling and dynamic deployment for the near space information network, and discusses the key technologies to address the challenges. Some key research directions of the near space information network in the near future are also discussed.

参考文献

[1] ZHANG X Y, DONG P, DU X J, et al. Space-ground integrated information network enabled Internet of vehicles:Architecture and key mechanisms[J]. IEEE Communications Standards Magazine, 2020, 4(4):11-17.
[2] CAO X B, YANG P, ALZENAD M, et al. Airborne communication networks:A survey[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9):1907-1926.
[3] 林英撑. 民用航空自组织网络路由协议研究[D]. 重庆:重庆大学, 2014:11-16. LIN Y C. Research on routing protocol for civil aeronautical ad hoc network[D]. Chongqing:Chongqing University, 2014:11-16 (in Chinese).
[4] 王俊杰, 李福昌, 张琳, 等. 民用航空互联网通信发展趋势及网络架构分析[J]. 邮电设计技术, 2021(12):28-31. WANG J J, LI F C, ZHANG L, et al. Analysis on development trend and network architecture of civil aviation communication[J]. Designing Techniques of Posts and Telecommunications, 2021(12):28-31 (in Chinese).
[5] ZAFAR W, KHAN B M. Flying ad-hoc networks:Technological and social implications[J]. IEEE Technology and Society Magazine, 2016, 35(2):67-74.
[6] OUBBATI O S, LAKAS A, ZHOU F, et al. A survey on position-based routing protocols for Flying Ad hoc Networks (FANETs)[J]. Vehicular Communications, 2017, 10:29-56.
[7] HOSSEIN MOTLAGH N, TALEB T, AROUK O. Low-altitude unmanned aerial vehicles-based Internet of Things services:Comprehensive survey and future perspectives[J]. IEEE Internet of Things Journal, 2016, 3(6):899-922.
[8] SEKANDER S, TABASSUM H, HOSSAIN E. Multi-tier drone architecture for 5G/B5G cellular networks:Challenges, trends, and prospects[J]. IEEE Communications Magazine, 2018, 56(3):96-103.
[9] HAYAT S, YANMAZ E, MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications:A communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4):2624-2661.
[10] KHUWAJA A A, CHEN Y F, ZHAO N, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4):2804-2821.
[11] KHAWAJA W, GUVENC I, MATOLAK D W, et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3):2361-2391.
[12] YAN C X, FU L G, ZHANG J K, et al. A comprehensive survey on UAV communication channel modeling[J]. IEEE Access, 2019, 7:107769-107792.
[13] BEKMEZCI I., SAHINGOZ O K, TEMEL Ş. Flying ad-hoc networks (FANETs):A survey[J]. Ad Hoc Networks, 2013, 11(3):1254-1270.
[14] KARAPANTAZIS S, PAVLIDOU F. Broadband communications via high-altitude platforms:A survey[J]. IEEE Communications Surveys & Tutorials, 2005, 7(1):2-31.
[15] GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2):1123-1152.
[16] KARABULUT KURT G, KHOSHKHOLGH M G, ALFATTANI S, et al. A vision and framework for the high altitude platform station (HAPS) networks of the future[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2):729-779.
[17] SAHINGOZ O K. Networking models in flying ad-hoc networks (FANETs):Concepts and challenges[J]. Journal of Intelligent & Robotic Systems, 2014, 74(1):513-527.
[18] MATOLAK D W, SUN R Y. Unmanned aircraft systems:Air-ground channel characterization for future applications[J]. IEEE Vehicular Technology Magazine, 2015, 10(2):79-85.
[19] ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles:Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5):36-42.
[20] GRACE D, MOHORCIC M. Broadband communications via high-altitude platforms[M]. Chichester:Wiley, 2011.
[21] LIU J Y, ZHANG H W, SHENG M, et al. High altitude air-to-ground channel modeling for fixed-wing UAV mounted aerial base stations[J]. IEEE Wireless Communications Letters, 2021, 10(2):330-334.
[22] LIAN Z X, JIANG L G, HE C, et al. A non-stationary 3-D wideband GBSM for HAP-MIMO communication systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2):1128-1139.
[23] LIN Z, LIN M, HUANG Y M, et al. Robust multi-objective beamforming for integrated satellite and high altitude platform network with imperfect channel state information[J]. IEEE Transactions on Signal Processing, 2019, 67(24):6384-6396.
[24] JI P P, JIANG L G, HE C, et al. Energy-efficient beamforming for beamspace HAP-NOMA systems[J]. IEEE Communications Letters, 2021, 25(5):1678-1681.
[25] AHMADINEJAD H, FALAHATI A. Forming a two-tier heterogeneous air-network via combination of high and low altitude platforms[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2):1989-2001.
[26] KE M L, GAO Z, HUANG Y, et al. An edge computing paradigm for massive IoT connectivity over high-altitude platform networks[J]. IEEE Wireless Communications, 2021, 28(5):102-109.
[27] SWAMINATHAN R, SHARMA S, VISHWAKARMA N, et al. HAPS-based relaying for integrated space-air-ground networks with hybrid FSO/RF communication:A performance analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3):1581-1599.
[28] 3GPP. Study on New Radio (NR) to support non-terrestrial networks (Release 15):3GPP TR 38.811[R]. The 3rd Generation Partnership Project, 2020.
[29] ITU-R. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems:ITU-R P.530-18[R]. The ITU Radiocommunication, 2021.
[30] OGBE D, LOVE D J, REBHOLZ M, et al. Efficient channel estimation for aerial wireless communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6):2774-2785.
[31] WANG X R, LI W L, CHEN V C. Hand gesture recognition using radial and transversal dual micro-motion features[J/OL]. IEEE Transactions on Aerospace and Electronic Systems(2022-06-02)[2022-06-06]. https://ieeexplore.ieee.org/document/9786733.
[32] DAI J S, LIU A, LAU V K N. FDD massive MIMO channel estimation with arbitrary 2D-array geometry[J]. IEEE Transactions on Signal Processing, 2018, 66(10):2584-2599.
[33] LIAN L X, LIU A, LAU V K N. Exploiting dynamic sparsity for downlink FDD-massive MIMO channel tracking[J]. IEEE Transactions on Signal Processing, 2019, 67(8):2007-2021.
[34] Recommendation ITU-R. Specific attenuation model for rain for use in prediction methods:ITU-R P.838[R]. The ITU Radiocommunication, 2005.
[35] Recommendation ITU-R. Reference standard atmospheres:ITU-R P 835-5-2012[R]. The ITU Radiocommunication, 2017.
[36] Recommendation ITU-R. Water vapour:Surface density and total columnar content:ITU-R P.836[R]. The ITU Radiocommunication, 2017.
[37] Recommendation ITU-R. Characteristics of precipitation for propagation modelling:ITU-R P.837[R]. The ITU Radiocommunication, 2017.
[38] YE J, DANG S P, SHIHADA B, et al. Space-air-ground integrated networks:Outage performance analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(12):7897-7912.
[39] YANG P, CAO X B, YIN C, et al. Proactive drone-cell deployment:Overload relief for a cellular network under flash crowd traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10):2877-2892.
[40] TANG X W, HUANG X L, HU F. QoE-driven UAV-enabled pseudo-analog wireless video broadcast:A joint optimization of power and trajectory[J]. IEEE Transactions on Multimedia, 2021, 23:2398-2412.
[41] ZHAN C, HUANG R J. Energy efficient adaptive video streaming with rotary-wing UAV[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7):8040-8044.
[42] 3GPP. Study on channel model for frequency spectrum above 6 GHz, V15.0.0:TR 38.900[R]. The 3rd Generation Partnership Project, 2018.
[43] YANG P, CAO X B, QUEK T Q S, et al. Networking of Internet of UAVs:Challenges and intelligent approaches[DB/OL]. ArXiv preprint:2111.07078, 2021.
文章导航

/