电子电气工程与控制

弹道可调的落角约束分数阶滑模制导律设计

  • 盛永智 ,
  • 甘佳豪 ,
  • 张成新
展开
  • 北京理工大学 自动化学院,北京  100081

收稿日期: 2022-02-24

  修回日期: 2022-03-22

  录用日期: 2022-06-05

  网络出版日期: 2022-06-17

Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint

  • Yongzhi SHENG ,
  • Jiahao GAN ,
  • Chengxin ZHANG
Expand
  • School of Automation,Beijing Institute of Technology,Beijing  100081,China

Received date: 2022-02-24

  Revised date: 2022-03-22

  Accepted date: 2022-06-05

  Online published: 2022-06-17

摘要

针对制导弹道带落角约束的末制导问题,提出了一种基于分数阶微积分理论的时变滑模制导律。可通过提前设置参数调整制导弹道,分数阶的引入增加了制导弹道的可变性和多样性。利用李雅普诺夫稳定性理论证明了制导律的稳定性。采用分数阶积分中值定理,将分数阶微分方程转化为一阶线性微分方程,并求解出状态误差的解析式,最后利用夹逼定理证明了制导律的收敛性。数值仿真结果表明,该制导律在保证高制导精度的同时,可大范围改变弹道形式,使制导弹道复杂多变难以预测。

本文引用格式

盛永智 , 甘佳豪 , 张成新 . 弹道可调的落角约束分数阶滑模制导律设计[J]. 航空学报, 2023 , 44(7) : 327073 -327073 . DOI: 10.7527/S1000-6893.2022.27073

Abstract

A time-varying sliding mode guidance law based on fractional calculus is presented for the terminal guidance problem with corner constraint. The guidance trajectory can be adjusted in advance by setting parameters,and the introduction of fractional order increases the variability and diversity of the guidance trajectory. The stability of the guidance law is proved by using the Lyapunov stability theory. Through the fractional order integral mean value theorem,the fractional order differential equation is transformed into a first-order linear differential equation,which is used to solve the analytical formula of state error. Finally,the convergence of the guidance law is proved by using the Squeeze Theorem. The simulation results show that the guidance law can change the trajectory form in a large range while ensuring high guidance accuracy,which makes the guidance trajectory complex and difficult to predict.

参考文献

1 李乔扬,陈桂明,许令亮. 弹道导弹突防技术现状及智能化发展趋势[J]. 飞航导弹2020(7):56-61.
  LI Q Y, CHEN G M, XU L L. Present situation and intelligent development trend of ballistic penetration technology[J]. Aerodynamic Missile Journal2020(7):56-61 (in Chinese).
2 赵汉元. 飞行器再入动力学和制导[M]. 长沙:国防科技大学出版社, 1997: 202-270.
  ZHAO H Y. Reentry dynamics and guidance of aircraft[M]. Changsha:National University of Defense Science and Technology Press,1997: 202-270 (in Chinese).
3 ZENG X Y, WEN T G, YU Y,et al. Potential hop reachable domain over surfaces of small bodies[J]. Aerospace Science and Technology2021112:106600.
4 WEN T G, ZENG X Y, CIRCI C,et al. Hop reachable domain on irregularly shaped asteroids[J]. Journal of Guidance,Control,and Dynamics202043(7):1269?1283.
5 邵会兵,崔乃刚,韦常柱. 滑翔导弹末段多约束智能弹道规划[J]. 光学精密工程201927(2):410-420.
  SHAO H B, CUI N G, WEI C Z. Multi-constrained intelligent trajectory planning for gliding missiles[J]. Optics and Precision Engineering201927(2):410-420 (in Chinese).
6 李静琳,陈万春,闵昌万. 高超末段机动突防/精确打击弹道建模与优化[J]. 北京航空航天大学学报201844(3):556-567.
  LI J L, CHEN W C, MIN C W. Terminal hypersonic trajectory modeling and optimization for maneuvering penetration and precision strike[J]. Journal of Beijing University of Aeronautics and Astronautics201844(3):556-567 (in Chinese).
7 KIM M, GRIDER K V. Terminal guidance for impact attitude angle constrained flight trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems19739(6):852–859.
8 KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems199834(1):277-288.
9 JEONG S K, CHO S J, KIM E G. Angle constraint biased PNG[C]∥Proceedings of 5th Asian Control Conference, 2004:1849?1854.
10 RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance,Control,and Dynamics200831(6):1817-1822.
11 洪功名,陈万春. 机动飞行器多终端约束反演滑模末端导引方法[J]. 飞行力学201533(3):226-231.
  HONG G M, CHEN W C. Terminal guidance of maneuvering vehicle with multiple constraints based on backstepping design[J]. Flight Dynamics201533(3):226-231 (in Chinese).
12 ZHANG W J, FU S N, LI W,et al. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception[J]. Journal of Systems Engineering and Electronics202031(1):168-184.
13 ZHAO F J, YOU H. New three-dimensional second-order sliding mode guidance law with impact-angle constraints[J]. The Aeronautical Journal2020124 (1273):368-384.
14 景亮,张忠阳,崔乃刚,等. 固定时间收敛扰动观测终端滑模制导律设计[J].系统工程与电子技术201941(8):1820-1826.
  JING L, ZHANG Z Y, CUI N G,et al. Fixed-time disturbance observer based terminal sliding mode guidance law[J]. Systems Engineering and Electronics201941(8):1820-1826 (in Chinese).
15 CHEN Z Y, CHEN W C, LIU X M,et al. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint[J]. Aerospace Science and Technology2021110:106523.
16 LI Q C, ZHANG W S, HAN G,et al. Finite time convergent wavelet neural network sliding mode control guidance law with impact angle constraint[J]. International Journal of Automation and Computing201512(6):588?599.
17 MAITY A, OZA H B, PADHI R. Generalized model predictive static programming and angle- constrained guidance of air-to-ground missiles[J]. Journal of Guidance,Control,and Dynamics201437(6):1897-1913.
18 ZHAO Y, SHENG Y Z, LIU X D. Analytical impact time and angle guidance via time-varying sliding mode technique[J]. ISA Transactions201662:164-176.
19 ERER K S, TEKIN R. Impact vector guidance[J]. Journal of Guidance,Control,and Dynamics202144(10):1892-1901.
20 YANG Y, ZHANG H H. Fractional calculus with its applications in engineering and technology[M]. California: Morgan & Claypool Publishers,2019.
21 CUONG H M, DONG H Q, TRIEU P V,et al. Adaptive fractional-order terminal sliding mode control of rubber-tired gantry cranes with uncertainties and unknown disturbances[J]. Mechanical Systems and Signal Processing2021154:107601.
22 唐骁,叶继坤. 针对高速机动目标的分数阶滑模制导律[J]. 航空兵器202128(2):21-26.
  TANG X, YE J K. Fractional sliding mode guidance law for high speed maneuvering targets[J]. Aero Weaponry202128(2):21-26 (in Chinese).
23 SHENG Y Z, ZHANG Z, XIA L,Fractional-order sliding mode control based guidance law with impact angle constraint[J]. Nonlinear Dynamics2021106(1):425-444.
24 GOLESTANI M, AHMADI P, FAKHARIAN A. Fractional order sliding mode guidance law: Improving performance and robustness[C]∥ 2016 4th International Conference on Control,Instrumentation,and Automation (ICCIA). Piscataway: IEEE Press, 2016: 469-474.
25 ZHOU X H, WANG W H, LIU Z H,et al. Impact angle constrained three-dimensional integrated guidance and control based on fractional integral terminal sliding mode control[J]. IEEE Access20197:126857-126870.
26 刘清楷,陈坚,汪立新,等. 三维落角约束自适应分数阶滑模制导律设计[J]. 现代防御技术201846(2):68-74.
  LIU Q K, CHEN J, WANG L X,et al. Design of 3D adaptive fractional order sliding mode guidance law with impact angle constraints[J]. Modern Defence Technology201846(2):68-74 (in Chinese).
27 LIU S X, YAN B B, ZHANG X,et al. Fractional-order sliding mode guidance law for intercepting hypersonic vehicles[J]. Aerospace20229(2):53.
28 DIETHELM K. The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus[J]. Fractional Calculus and Applied Analysis201215(2):304-313.
29 NASA. U. S. standard atmosphere, 1976: NASA-TM-X-74335[R]. Washington, D.C.: NASA, 1976.
30 薛定宇. 分数阶微积分学与分数阶控制[M]. 北京:科学出版社,2018: 4-7.
  XUE D Y. Fractional calculus and fractional-order control[M]. Beijing:Science Press,2018: 4-7 (in Chinese).
文章导航

/