电子电气工程与控制

基于时空轨迹信息的目标行为模式在线分类方法

  • 姜乔文 ,
  • 刘瑜 ,
  • 丁自然 ,
  • 孙顺 ,
  • 简涛
展开
  • 海军航空大学 信息融合研究所,烟台 264001
. E-mail: liuyu77360132@126.com

收稿日期: 2022-04-13

  修回日期: 2022-05-11

  录用日期: 2022-05-24

  网络出版日期: 2022-06-08

基金资助

国家自然科学基金(62022092);山东省高等学校青创科技支持计划(2021KJ005);基础加强计划技术领域基金(2021-JCJQ-JJ-0251);泰山学者工程专项经费(tsqn201909156)

Online classification of target behavior pattern based on spatiotemporal trajectory information

  • Qiaowen JIANG ,
  • Yu LIU ,
  • Ziran DING ,
  • Shun SUN ,
  • Tao JIAN
Expand
  • Institute of Information Fusion,Naval Aviation University,Yantai 264001,China

Received date: 2022-04-13

  Revised date: 2022-05-11

  Accepted date: 2022-05-24

  Online published: 2022-06-08

Supported by

National Natural Science Foundation of China(62022092);Shandong Provincial Colleges and Universities Youth Innovation Technology Support Program(2021KJ005);Foundation Strengthening Program technical area Fund(2021-JCJQ-JJ-0251);Special funds for Taishan Scholars Project(tsqn201909156)

摘要

在预警监视领域,及时地预测目标行为模式对于态势认知至关重要。首先,针对当前大多数目标行为分类器实时性不强、对离群轨迹不敏感等问题,提出了带有离群检测的归纳式一致性多类预测器(ICMP)。其次,针对目标行为分类算法仅考虑目标的空间位置信息,而忽略航向和速度信息的问题,基于轨迹的时间和空间2个维度的信息提出了时空Hausdorff距离(STHD),从而可以有效区分空间位置相似但运动速度和方向不同的行为。然后,基于定向时空Hausdorff距离和K最近邻思想构造了定向时空Hausdorff最近邻不一致性度量函数(DSHNN-NCM);在此基础上,提出了带有离群检测的序贯时空Hausdorff最近邻归纳式一致性多类预测器(SSHNN-ICMP),能够在预警监视场景下对目标频繁出现的行为进行在线学习和分类。最后,分别在仿真军事场景和真实民用场景中进行实验分析,结果表明本文算法具备较好的准确性和实时性,在预警监视任务中有良好的应用前景。

本文引用格式

姜乔文 , 刘瑜 , 丁自然 , 孙顺 , 简涛 . 基于时空轨迹信息的目标行为模式在线分类方法[J]. 航空学报, 2023 , 44(8) : 327281 -327281 . DOI: 10.7527/S1000-6893.2022.27281

Abstract

In the early warning and monitoring field, it is very important to predict target behavior patterns in time for situation cognition. Firstly, an Inductive Conformal Multi-class Predictor (ICMP) with outlier detection is proposed to solve the problem that most current classifiers are in low computational efficiency and not sensitive to outliers. Secondly, to overcome the problem that most behavior pattern classifiers only consider the spatial location information of the target and ignore the course and velocity information, a concept of Spatio-Temporal Hausdorff Distance (STHD) is proposed to distinguish behaviors with similar spatial position but different course and velocity effectively. Then, a Directed Spatiotemporal Hausdorff Nearest Neighbor Nonconformity Measure (DSHNN-NCM) function is constructed by combining the idea of KNN and STHD. On this basis, a Sequential Spatiotemporal Hausdorff Nearest Neighbor Inductive Conformal Multi-class Predictor (SSHNN-ICMP) with outlier detector is proposed, which can online learn and predict the frequent behaviors of targets in the early warning and monitoring scenario. Finally, experiments and analyses are carried out in a military simulation scenario and a real civilian scenario. The results show that the proposed algorithm has better accuracy and real-time performance, showing good applicability in early warning and surveillance tasks.

参考文献

1 何友, 姚力波, 江政杰. 基于空间信息网络的海洋目标监视分析与展望[J]. 通信学报201940(4): 1-9.
  HE Y, YAO L B, JIANG Z J. Summary and future development of marine target surveillance based on spatial information network[J]. Journal on Communications201940(4): 1-9 (in Chinese).
2 何友, 姚力波. 天基海洋目标信息感知与融合技术研究[J]. 武汉大学学报(信息科学版)201742(11): 1530-1536.
  HE Y, YAO L B. Space-based Sea target information awareness and fusion[J]. Geomatics and Information Science of Wuhan University201742(11): 1530-1536 (in Chinese).
3 何友, 熊伟, 刘俊, 等. 海上信息感知与融合研究进展及展望[J]. 火力与指挥控制201843(6): 1-10.
  HE Y, XIONG W, LIU J, et al. Review and prospect of research on maritime information perception and fusion[J]. Fire Control & Command Control201843(6): 1-10 (in Chinese).
4 PAN X L, HE Y, WANG H P, et al. Mining regular behaviors based on multidimensional trajectories[J]. Expert Systems With Applications201666: 106-113.
5 ANSARI M Y, MAINUDDIN, AHMAD A, et al. Spatiotemporal trajectory clustering: A clustering algorithm for spatiotemporal data[J]. Expert Systems With Applications2021178: 115048.
6 RONG H, TEIXEIRA A P, GUEDES SOARES C. Data mining approach to shipping route characterization and anomaly detection based on AIS data[J]. Ocean Engineering2020198: 106936.
7 潘奇明, 周文辉, 程咏梅. 运动目标轨迹分类与识别[J]. 火力与指挥控制200934(11): 79-83.
  PAN Q M, ZHOU W H, CHENG Y M. Trajectory classification and recognition of moving objects[J]. Fire Control & Command Control200934(11): 79-83 (in Chinese).
8 魏龙翔, 何小海, 滕奇志, 等. 结合Hausdorff距离和最长公共子序列的轨迹分类[J]. 电子与信息学报201335(4): 784-790.
  WEI L X, HE X H, TENG Q Z, et al. Trajectory classification based on Hausdorff distance and longest common SubSequence[J]. Journal of Electronics & Information Technology201335(4): 784-790 (in Chinese).
9 曲琳, 周凡, 陈耀武. 基于Hausdorff距离的视觉监控轨迹分类算法[J]. 吉林大学学报(工学版)200939(6): 1618-1624.
  QU L, ZHOU F, CHEN Y W. Trajectory lcassification based on Hausdorff distance for visual surveillance system[J]. Journal of Jilin University (Engineering and Technology Edition)200939(6): 1618-1624 (in Chinese).
10 POKORNY F T, HAWASLY M, RAMAMOORTHY S. Topological trajectory classification with filtrations of simplicial complexes and persistent homology[J]. International Journal of Robotics Research201635(1-3): 204-223.
11 BOLBOL A, CHENG T, TSAPAKIS I, et al. Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification[J]. Computers Environment and Urban Systems201236(6):526-537.
12 赵竹珺, 吉根林. 时空轨迹分类研究进展[J]. 地球信息科学学报201719(3): 289-297.
  ZHAO Z J, JI G L. Research progress of spatial-temporal trajectory classification[J]. Journal of Geo-Information Science201719(3): 289-297 (in Chinese).
13 潘新龙, 程学旗, 王海鹏, 等. 基于航迹数据挖掘的目标行为分析概述[J]. 指挥与控制学报20217(4): 335-341.
  PAN X L, CHENG X Q, WANG H P, et al. An overview of target behavior analysis based on trajectory data mining[J]. Journal of Command and Control20217(4): 335-341 (in Chinese).
14 曹卫权, 李智翔, 魏强, 等. 基于区域分布概率密度估计的轨迹分类方法[J]. 计算机工程201844(4): 262-267, 286.
  CAO W Q, LI Z X, WEI Q, et al. Trajectory classification method based on probability density estimation of regional distribution[J]. Computer Engineering201844(4): 262-267, 286 (in Chinese).
15 崔彤彤, 王桂玲, 高晶. 基于1DCNN-LSTM的船舶轨迹分类方法[J]. 计算机科学202047(9): 175-184.
  CUI T T, WANG G L, GAO J. Ship trajectory classification method based on 1DCNN-LSTM[J]. Computer Science202047(9): 175-184 (in Chinese).
16 OWENS J, HUNTER A. Application of the self-organising map to trajectory classification[C]∥Proceedings Third IEEE International Workshop on Visual Surveillance. Piscataway: IEEE Press, 2002: 77-83.
17 BOLBOL A, CHENG T, TSAPAKIS I, et al. Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification[J]. Computers, Environment and Urban Systems201236(6): 526-537.
18 SAINI R, KUMAR P, ROY P P, et al. Modeling local and global behavior for trajectory classification using graph based algorithm[J]. Pattern Recognition Letters2021150(C): 280-288.
19 PAN X L, WANG H P, HE Y, et al. Online classification of frequent behaviours based on multidimensional trajectories[J]. IET Radar, Sonar & Navigation, 201711(7): 1147-1154.
20 VOVK V, GAMMERMAN A, SHAFER G. Algorithmic Learning in a Random World[M]. Cham: Springer International Publishing, 2022.
21 VOVK V. Universal well-calibrated algorithm for on-line classification[C]∥Learning Theory and Kernel Machines. Berlin: Springer, 2003: 358-372.
22 PAPADOPOULOS H. Inductive conformal prediction: Theory and application to neural networks[M]∥Tools in Artificial Intelligence. London: InTech, 2008 .
23 LAXHAMMAR R, FALKMAN G. Online learning and sequential anomaly detection in trajectories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201436(6): 1158-1173.
24 PAN X L, WANG H P, CHENG X Q, et al. Online detection of anomaly behaviors based on multidimensional trajectories[J]. Information Fusion202058: 40-51.
25 AGRAWAL R, IMIELI?SKI T, SWAMI A. Mining association rules between sets of items in large databases[C]∥Proceedings of the 1993 ACM SIGMOD international conference on Management of data. New York: ACM, 1993: 207-216.
26 LI H H, LIU J X, YANG Z L, et al. Adaptively constrained dynamic time warping for time series classification and clustering[J]. Information Sciences2020534: 97-116.
27 GAMMERMAN A, VOVK V. Hedging predictions in machine learning[J]. The Computer Journal200750(2): 151-163.
28 PICIARELLI C, MICHELONI C, FORESTI G L. Trajectory-based anomalous event detection[J]. IEEE Transactions on Circuits and Systems for Video Technology200818(11): 1544-1554.
29 姜乔文, 刘瑜, 谭大宁, 等. 时空轨迹多维特征融合的行为规律挖掘算法[J]. 航空学报202344(5): 326394.
  JIANG Q W, LIU Y, TAN D N, et al. Regular behaviors mining algorithm based on spatiotemporal trajectory multidi-mensional features fusion[J]. Acta Aeronautica et Astronautica Sinica202344(5): 32394 (in Chinese).
文章导航

/