临近空间太阳能飞机能量最优飞行航迹规划方法展望
收稿日期: 2022-04-08
修回日期: 2022-05-06
录用日期: 2022-05-30
网络出版日期: 2022-06-08
基金资助
国家自然科学基金(52172410)
General planning method for energy optimal flight path of solar⁃powered aircraft in near space
Received date: 2022-04-08
Revised date: 2022-05-06
Accepted date: 2022-05-30
Online published: 2022-06-08
Supported by
National Natural Science Foundation of China(52172410)
临近空间太阳能飞机是低速临近空间飞行器中一种极具发展潜力的技术途径,有望成为一个理想的区域通信、中继和运输平台。实现N×24小时能源闭环的超长航时飞行,是发展临近空间太阳能飞机的核心问题,也是形成“区域保持+时间持久”特色能力的关键。能量最优航迹规划方法是解决临近空间太阳能飞机跨昼夜能量闭环难题的有效技术方向。当前临近空间太阳能飞机能量最优航迹规划方法可分为2类:不考虑风场变化的能量最优航迹规划方法和不考虑大范围高度变化的能量最优航迹规划方法。分别对这2类问题的研究成果进行了分析与讨论,考虑不同处理框架给实际工程应用带来的困难与挑战,认为未来应统一考虑太阳辐射、空间高度和风场变化,并融合重力势能与梯度风场对太阳能飞机临近空间持久驻留能量变化的影响,开展基于强化学习框架的太阳能飞机能量最优“通用”飞行航迹规划方法研究。为此,有必要开展临近空间风场环境表征与重构、临近空间梯度风场对太阳能飞机滑翔轨迹能量影响分析、最优飞行航迹示教轨迹生成与分类、基于示教轨迹的太阳能飞机强化学习框架构建等关键技术研究。可为设计太阳能飞机能量最优航迹规划方法提供参考,为规划太阳能飞机研究技术路线提供支撑。
高显忠 , 邓小龙 , 王玉杰 , 郭正 , 侯中喜 . 临近空间太阳能飞机能量最优飞行航迹规划方法展望[J]. 航空学报, 2023 , 44(8) : 27265 -027265 . DOI: 10.7527/S1000-6893.2022.27265
Solar-powered aircraft is one of the most promising technical route for the development of low-speed aerial vehicle in near space, and is expected to be an ideal platform for regional communication, relay and transportation.N×24-hour energy closed loop is the crucial problem for the development of near space solar-powered aircraft,and is also a key technology for aircraft to have the ability of “regional maintenance & time sustainability”. The energy optimal flight path planning method is an effective technical route to solve the problem of day-night energy closed-loop of solar-powered aircraft in near space. Currently, there are two methods for energy optimal flight path planning: one is the method without considering the change of wind field, and the other is the method without considering the change of large-scale altitude. Analysis and comment are given to the research results of these two methods. In order to conquer the difficulties and challenges brought by these two different processing frameworks in practical engineering application, suggestion is proposed to build a uniform framework based on reinforcement learning to form a “general” flight path planning method. This framework should consider the changes of solar radiation, space altitude and wind field, and also the effects of energy stored by gravity potential and energy harvested from wind shear. The key technologies to achieve this aim are analyzed: The environmental characterization and reconstruction of wind field; the impact of near space gradient wind field on the energy of solar aircraft glide trajectory; The generation and classification of optimal flight path demonstration trajectory; the construction of solar aircraft reinforcement learning framework based on demonstration trajectory. This paper provides theoretical support for the design method of energy optimal flight path planning, and technical support for realization of high-altitude long-endurance flight.
1 | 朱雄峰, 郭正, 侯中喜, 等. 太阳能飞行器设计域分析和总体设计方法[J]. 宇航学报, 2014, 35(7): 735-742. |
ZHU X F, GUO Z, HOU Z X, et al. Design domain analysis and conceptual design method of solar-powered vehicle[J]. Journal of Astronautics, 2014, 35(7): 735-742 (in Chinese). | |
2 | REDDY K, POONDLA A. Performance analysis of solar powered Unmanned Aerial Vehicle[J]. Renewable Energy, 2017, 104: 20-29. |
3 | 张健, 王江三, 耿延升, 等. 高空长航时太阳能无人机的技术挑战[J]. 航空科学技术, 2020, 31(4): 14-20. |
ZHANG J, WANG J S, GENG Y S, et al. Technology challenges for high altitude long endurance solar powered UAV[J]. Aeronautical Science & Technology, 2020, 31(4): 14-20 (in Chinese). | |
4 | NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap report[R]. Washington, D.C.: NASA Langley Research Center, 2004. |
5 | 郭正, 朱雄峰, 侯中喜. 太阳能飞机: 基于广义能源的总体参数设计[M]. 北京: 科学出版社, 2021. |
GUO Z, ZHU X F, HOU Z X. Solar-powered aircraft[M]. Beijing: Science Press, 2021 (in Chinese). | |
6 | NOLL T E, ISHMAEL S D, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototype vehicle mishap: RTO-MP-AVT-145 [R]. Washington, D.C.: NASA Langley Research Center, 2007. |
7 | ZHU X F, GUO Z, FAN R F, et al. How high can solar-powered airplanes fly[J]. Journal of Aircraft, 2014, 51(5): 1653-1659. |
8 | WU M J, SHI Z W, XIAO T H, et al. Energy optimization and investigation for Z-shaped Sun-tracking morphing-wing solar-powered UAV[J]. Aerospace Science and Technology, 2019, 91: 1-11. |
9 | 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. |
MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese). | |
10 | GUO Z, CHEN X K, HOU Z X, et al. Development of a solar electric powered UAV for long endurance flight[C]∥ 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011: 6966. |
11 | NI W J, BI Y, WU D,et al. Energy-optimal trajectory planning for solar-powered aircraft using soft actor-critic[J]. Chinese Journal of Aeronautics, 2022, 35(10): 337-353. |
12 | ZHANG Z J, ZHANG R, ZHU J,et al. Integrated batteries layout and structural topology optimization for a solar-powered drone[J]. Chinese Journal of Aeronautics, 2021, 34(7): 114-123. |
13 | 仲维国, 郭有光, 张凯. 太阳能飞机循环飞行的高度剖面能量策略[J]. 航空学报, 2020, 41(3): 623429. |
ZHONG W G, GUO Y G, ZHANG K. Energy strategy on altitude profile for cycle flight of solar powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623429 (in Chinese). | |
14 | 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014, 35(2): 408-416. |
MA D L, BAO W Z, QIAO Y H. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 408-416 (in Chinese). | |
15 | 昂海松. 太阳能无人机[J]. 电子产品世界, 2015, 22(8): 24-26, 33. |
ANG H S. Solar powered UAV[J]. Electronic Engineering & Product World, 2015, 22(8): 24-26, 33 (in Chinese). | |
16 | WU M, SHI Z, XIAO T,et al. Flight trajectory optimization of Sun-tracking solar aircraft under the constraint of mission region[J]. Chinese Journal of Aeronautics, 2021, 34(11): 140-153. |
17 | WU M, SHI Z, XIAO T,et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology, 2021, 108: 106404. |
18 | 王春阳, 周洲, 王睿. 基于最长航时的太阳能无人机操纵策略研究[J]. 西北工业大学学报, 2020, 38(1): 75-83. |
WANG C Y, ZHOU Z, WANG R. Study on operation strategy of solar-powered UAV based on longest endurance[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 75-83 (in Chinese). | |
19 | CHANDRASEKHARAN S, GOMEZ K, AL-HOURANI A, et al. Designing and implementing future aerial communication networks[J]. IEEE Communications Magazine, 2016, 54(5): 26-34. |
20 | 朱立宏, 孙国瑞, 呼文韬, 等. 太阳能无人机能源系统的关键技术与发展趋势[J]. 航空学报, 2020, 41(3): 623503. |
ZHU L H, SUN G R, HU W T, et al. Key technology and development trend of energy system in solar powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623503 (in Chinese). | |
21 | NOTH A. Design of solar powered airplanes for continuous flight[D]. Switzerland:ETH Zurich,2008. |
22 | KLESH A T, KABAMBA P T. Solar-powered aircraft: Energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1320-1329. |
23 | SPANGELO S C, GILBERT E G, KLESH A T, et al. Periodic energy-optimal path planning for solar-powered aircraft[C]∥ AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 6016. |
24 | SPANGELO S C, GILBERT E G. Power optimization of solar-powered aircraft with specified closed ground tracks[J]. Journal of Aircraft, 2012, 50(1): 232-238. |
25 | HUANG Y, CHEN J, WANG H,et al. A method of 3D path planning for solar-powered UAV with fixed target and solar tracking[J]. Aerospace Science and Technology, 2019, 92: 831-838. |
26 | SACHS G, LENZ J, HOLZAPFEL F. Unlimited endurance performance of solar UAVs with minimal or zero electrical energy storage[C]∥ AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 6013. |
27 | SACHS G, LENZ J, HOLZAPFEL F. Periodic optimal control for solar aircraft with unlimited endurance capability[C]∥ AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2008: 6875. |
28 | GAO X Z, HOU Z X, GUO Z, et al. Joint optimization of battery mass and flight trajectory for high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(13): 2439-2451. |
29 | GAO X Z, HOU Z X, GUO Z, et al. Energy management strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70: 20-30. |
30 | SILVA P, BAN M, KRANJC N, et al. Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect[J]. Applied Energy, 2013, 101: 151-160. |
31 | SACHS G, TRAUGOTT J, NESTEROVA A P, et al. Flying at no mechanical energy cost: Disclosing the secret of wandering albatrosses[J]. PLoS One, 2012, 7(9): e41449. |
32 | MANLEY W R. The soaring of birds[J]. Nature, 1883, 28(713): 198. |
33 | AKOS Z, NAGY M, LEVEN S, et al. Thermal soaring flight of birds and unmanned aerial vehicles[J]. Bioinspiration & Biomimetics, 2010, 5(4): 045003. |
34 | Richardson P L. How do albatrosses fly around the world without flapping their wings?[J]. Progress in Oceanography, 2011, 88(1-4): 46-58. |
35 | WALKDEN S L. Experimental study of the “soaring” of albatrosses[J]. Nature, 1925, 116(2908): 132-134. |
36 | WILSON J A. Sweeping flight and soaring by albatrosses[J]. Nature, 1975, 257(5524): 307-308. |
37 | JONES D. Forever airborne[J]. Nature, 1994, 372(6502): 136. |
38 | LENTINK D, MüLLER U K, STAMHUIS E J, et al. How swifts control their glide performance with morphing wings[J]. Nature, 2007, 446(7139): 1082-1085. |
39 | LANGELAAN J W, ROY N. Engineering. Enabling new missions for robotic aircraft[J]. Science, 2009, 326(5960): 1642-1644. |
40 | KAHVECI N E, IOANNOU P A, MIRMIRANI M D. Adaptive LQ control with anti-windup augmentation to optimize UAV performance in autonomous soaring applications[J]. IEEE Transactions on Control Systems Technology, 2008, 16(4): 691-707. |
41 | LAWRANCE N R J, SUKKARIEH S. Autonomous exploration of a wind field with a gliding aircraft[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 719-733. |
42 | SACHS G P. Dynamic soaring at 600 mph[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0107. |
43 | KOESSLER J H. Dynamic soaring kinetic energy reference frames[J]. Journal of Aircraft, 2018, 56(1): 22-29. |
44 | ZHAO Y M, DUTTA A, TSIOTRAS P, et al. Optimal aircraft trajectories for wind energy extraction[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2): 488-496. |
45 | GAVRILOVIC N, BENARD E, PASTOR P, et al. Performance improvement of small unmanned aerial vehicles through gust energy harvesting[J]. Journal of Aircraft, 2017, 55(2): 741-754. |
46 | BENCATEL R, KABAMBA P, GIRARD A. Perpetual dynamic soaring in linear wind shear[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1712-1716. |
47 | GONZáLEZ-ARRIBAS D, SOLER M, SANJURJO-RIVO M. Robust aircraft trajectory planning under wind uncertainty using optimal control[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(3): 673-688. |
48 | TURKOGLU K. Real-time first-order guidance strategies for trajectory optimization through wind energy utilization[J]. Journal of Aircraft, 2017, 54(6): 2140-2147. |
49 | NEKOUI M, KHAGHANI J, NASIRI R, et al. Natural dynamics exploitation of dynamic soaring: Towards bio-inspired and energy efficient flying locomotion[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 8171-8176. |
50 | SALAZAR L R, COBANO J A, OLLERO A. UAS soaring trajectories considering the atmospheric boundary layer for oceanic long duration missions[C]∥ MTS/IEEE OES OCEANS conference. Piscataway: IEEE Press, 2017 |
51 | MIR I, EISA S A, MAQSOOD A. Review of dynamic soaring: Technical aspects, nonlinear modeling perspectives and future directions[J]. Nonlinear Dynamics, 2018, 94(4): 3117-3144. |
52 | MIR I, TAHA H, EISA S A, et al. A controllability perspective of dynamic soaring[J]. Nonlinear Dynamics, 2018, 94(4): 2347-2362. |
53 | GAO X Z, XI H ZH, ZHENG G, et al. The influence of wind shear to the performance of high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(9): 1562-1573. |
54 | GAO X Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 96-108. |
55 | GAO X Z, HOU Z X, GUO Z, et al. Analysis and design of guidance-strategy for dynamic soaring with UAVs[J]. Control Engineering Practice, 2014, 32: 218-226. |
56 | REDDY G, WONG-NG J, CELANI A, et al. Glider soaring via reinforcement learning in the field[J]. Nature, 2018, 562(7726): 236-239. |
57 | 邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40(8): 022941. |
DENG X L, YANG X X, MA Z Y, et al. Review of key technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 022941 (in Chinese). | |
58 | 龙远, 邓小龙, 杨希祥, 等. 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48(10): 1970-1978. |
LONG Y, DENG X L, YANG X X, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978 (in Chinese). | |
59 | NOBAHARI H, SHARIFI A. Multiple model extended continuous ant colony filter applied to real-time wind estimation in a fixed-wing UAV[J]. Engineering Applications of Artificial Intelligence, 2020, 92: 103629. |
60 | WANG X, YANG Y, WANG D,et al. Mission-oriented cooperative 3D path planning for modular solar-powered aircraft with energy optimization[J]. Chinese Journal of Aeronautics, 2022, 35(1): 98-109. |
61 | 侯中喜. 太阳能飞机: 高空长航时飞行关键问题[M]. 北京: 科学出版社, 2021. |
HOU Z X, GAO X Z, GUO Z, et al. Solar-powered aircraft--the crucial problem about the high-altitude long-endurance flight[M]. Beijing: Science Press, 2021. | |
62 | GAO X Z, HOU Z X, GUO Z, et al. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage[J]. Energy Conversion and Management, 2013, 76: 986-995. |
63 | MARDANPOUR P, HODGES D H. Passive morphing of flying wing aircraft: Z-shaped configuration[J]. Journal of Fluids and Structures, 2014, 44: 17-30. |
64 | ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 770-783. |
65 | GRENESTEDT J L, SPLETZER J R. Towards perpetual flight of a gliding unmanned aerial vehicle in the jet stream[C]∥ 49th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2011: 6343-6349. |
66 | LANGELAAN J W. Gust energy extraction for mini and micro uninhabited aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 464-473. |
67 | SUKUMAR P P, SELIG M S. Dynamic soaring of sailplanes over open fields[J]. Journal of Aircraft, 2013, 50(5): 1420-1430. |
68 | LIU D N, HOU Z X, GUO Z, et al. Optimal patterns of dynamic soaring with a small unmanned aerial vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(9): 1593-1608. |
69 | LIU D N, HOU Z X, GAO X Z. Flight modeling and simulation for dynamic soaring with small unmanned air vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(4): 589-605. |
70 | SACHS G P, LENZ J, HOLZAPFEL F. Dynamic soaring of albatrosses over land[C]∥ AIAA Atmospheric Flight Mechanics (AFM) Conference. Reston: AIAA, 2013: 4842. |
71 | WANG S, MA D, YANG M, et al. Flight strategy optimization for high-altitude long-endurance solar-powered aircraft based on Gauss pseudo-spectral method[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2286-2298. |
72 | ANDREYCHUK A, YAKOVLEV K, SURYNEK P, et al. Multi-agent pathfinding with continuous time[J]. Artificial Intelligence, 2022, 305: 103662. |
73 | BINGJIE Z, ZHONGXI H, YAFEI L, et al. The direction zone of engineless uavs in dynamic soaring[J]. CMES: Computer Modeling in Engineering & Sciences, 2015, 105(6):467-490. |
74 | FU C, DING F, LI Y, et al. Learning dynamic regression with automatic distractor repression for real-time UAV tracking[J]. Engineering Applications of Artificial Intelligence, 2021, 98: 104116. |
75 | FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[DB/OL]. arXiv preprint: 1802.09477, 2018. |
76 | GALáN-JIMéNEZ J, MOGUEL E, GARCíA-ALONSO J, et al. Energy-efficient and solar powered mission planning of UAV swarms to reduce the coverage gap in rural areas: The 3D case[J]. Ad Hoc Networks, 2021, 118: 102517. |
77 | MAO Q, ZHANG L, HU F, et al. Deep Learning (DL)-based adaptive transport layer control in UAV Swarm Networks[J]. Computer Networks, 2021, 201: 108511. |
78 | SHEN B J, CHEEMA M A, HARABOR D D, et al. Fast optimal and bounded suboptimal Euclidean pathfinding[J]. Artificial Intelligence, 2022, 302: 103624. |
79 | ZHEN Z, CHEN Y, WEN L, et al. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment[J]. Aerospace Science and Technology, 2020, 100: 105826. |
80 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359. |
81 | 高显忠. 基于重力势与风梯度的太阳能飞行器HALE问题研究[D]. 长沙: 国防科学技术大学, 2014. |
GAO X Z. Research on high-altitude long-endurance flight of solar-powered aircraft based on gravitational potential and wind shear[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). | |
82 | 朱炳杰. 无人机风梯度动态滑翔机理与航迹优化研究[D]. 长沙: 国防科学技术大学, 2016. |
ZHU B J. Research on mechanism and trajectory optimization for unmanned aerial vehicles by dynamic soaring in gradient wind[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
83 | 单上求. 梯度风动态滑翔平衡态研究和控制器设计[D]. 长沙: 国防科技大学, 2017. |
SHAN S Q. Research on equilibrium of dynamic soaring in gradient wind and controller design[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
84 | 陈少飞. 无人机集群系统侦察监视任务规划方法[D]. 长沙: 国防科学技术大学, 2016. |
CHEN S F. Planning for reconnaissance and monitoring using UAV swarms[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
85 | 刘多能. 固定翼无人机动态滑翔机理与航迹优化研究[D]. 长沙: 国防科学技术大学, 2016. |
LIU D N. Research on mechanism and trajectory optimization for dynamic soaring with fixed-wing unmanned aerial vehicles[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). |
/
〈 |
|
〉 |