空空导弹敏捷转弯固定时间收敛滑模控制
收稿日期: 2022-04-08
修回日期: 2022-04-27
录用日期: 2022-05-21
网络出版日期: 2022-06-08
Fixed⁃time convergent sliding mode control for agile turn of air⁃to⁃air missiles
Received date: 2022-04-08
Revised date: 2022-04-27
Accepted date: 2022-05-21
Online published: 2022-06-08
针对空空导弹攻击载机后半球目标的敏捷转弯控制问题,提出了一种基于固定时间稳定理论和抗干扰机制的滑模控制方法。首先,建立了考虑气动干扰的直接力/气动力复合控制的空空导弹运动模型;其次,通过引入分段非线性函数,采用双变幂次快速终端滑模面,设计了一种非奇异固定时间收敛敏捷转弯滑模控制器;再次,为了削弱滑模控制方法的抖振现象,针对一类匹配气动干扰,设计了一种双幂次固定时间收敛的扩张状态观测器(ESO),实现了对气动扰动的快速准确估计以补偿控制律;然后,基于Lyapunov稳定性理论证明了系统的固定时间稳定性,并给出了收敛时间表达式;最后,通过敏捷转弯弹道仿真分析,验证了所提方法的有效性。与以往控制方法相比,本文所提方法能够让导弹在不同初始状态下都能在较小的固定时间内完成敏捷转弯,系统收敛速度较快,有效削弱了抖振并提高了复合控制效率。
李政 , 于剑桥 , 赵新运 . 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023 , 44(8) : 327262 -327262 . DOI: 10.7527/S1000-6893.2022.27262
Based on the fixed-time stability theory and disturbance rejection mechanism, a method for sliding mode control is proposed for the agile turn when an air-to-air missile intercepts a target in the rear hemisphere of the carrier. First, a mathematical model for air-to-air missile with blended lateral thrusters and aerodynamic control systems is established considering the aerodynamic disturbance. Next, by introducing the segmented nonlinear function to a double-variable-power sliding mode, a fixed-time convergent nonsingular sliding mode controller is designed. Then, to weaken the chattering in sliding mode control, a fixed-time convergent double-variable-power Extended State Observer (ESO) is designed to realize precise estimation of matched aerodynamic disturbance, so as to compensate for the control law. Based on the Lyapunov stability theory, the fixed-time stability of the system is proved, and the expression for the convergence time is given. Finally, simulation and analysis of the missile agile turn is given to validate the effectiveness of the theoretical results. Compare with previous controllers, the controller proposed allows the missile to complete agile turns at different initial states in a small fixed time, converge more quickly, weaken the chattering effectively and improve the control efficiency.
1 | LEE C H, KIM T H, TAHK M J. Agile missile autopilot design using nonlinear backstepping control with time-delay adaptation[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2014, 57(1): 9-20. |
2 | RYU S M, WON D Y, LEE C H, et al. High angle of attack missile autopilot design by pole placement approach[C]∥2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics. Piscataway: IEEE Press, 2010: 535-539. |
3 | THUKRAL A, INNOCENTI M. A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering[J]. IEEE Transactions on Control Systems Technology, 1998, 6(3): 359-371. |
4 | 王鹏, 陈万春, 殷兴良. 空空导弹大角度姿态反作用喷气控制[J]. 航空学报, 2005, 26(3): 263-267. |
WANG P, CHEN W C, YIN X L. Large angle attitude reaction jet control for an air-to-air missile[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 263-267 (in Chinese). | |
5 | WU Y Q, YU X H, MAN Z H. Terminal sliding mode control design for uncertain dynamic systems[J]. Systems & Control Letters, 1998, 34(5): 281-287. |
6 | MA Y Y. High angle of attack command generation technique and tracking control for agile missiles[J]. Aerospace Science and Technology, 2015, 45: 324-334. |
7 | MA Y Y, TANG S J, GUO J, et al. Agile missile autopilot design for high angle of attack maneuvering with aerodynamic uncertainty[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2015, 58(5): 270-279. |
8 | YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879. |
9 | POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110. |
10 | POLYAKOV A, EFIMOV D, PERRUQUETTI W. Robust stabilization of MIMO systems in finite/fixed time[J]. International Journal of Robust and Nonlinear Control, 2016, 26(1): 69-90. |
11 | LI H J, CAI Y L. On SFTSM control with fixed-time convergence[J]. IET Control Theory & Applications, 2017, 11(6): 766-773. |
12 | NI J K, LIU L, LIU C X, et al. Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(2): 151-155. |
13 | 张宽桥, 杨锁昌, 李宝晨, 等. 考虑驾驶仪动态特性的固定时间收敛制导律[J]. 航空学报, 2019, 40(11): 323227. |
ZHANG K Q, YANG S C, LI B C, et al. Fixed-time convergent guidance law considering autopilot dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 323227 (in Chinese). | |
14 | 王伯平, 王亮, 盛永智. 固定时间收敛的再入飞行器全局滑模跟踪制导律[J]. 宇航学报, 2017, 38(3): 296-303. |
WANG B P, WANG L, SHENG Y Z. A global sliding mode based tracking guidance law with fixed-time convergence for reentry vehicle[J]. Journal of Astronautics, 2017, 38(3): 296-303 (in Chinese). | |
15 | 刘祥, 李爱军, 郭永, 等. 固定时间收敛的空空导弹直接力/气动力复合控制[J]. 哈尔滨工业大学学报, 2019, 51(9): 29-34, 42. |
LIU X, LI A J, GUO Y, et al. Fixed-time convergence blended control for air-to-air missile with lateral thrusters and aerodynamic force[J]. Journal of Harbin Institute of Technology, 2019, 51(9): 29-34, 42 (in Chinese). | |
16 | ZHANG L. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle[J]. Aerospace Science and Technology, 2018, 82-83: 70-79. |
17 | 梅亚飞, 廖瑛, 龚轲杰, 等. SE(3)上航天器姿轨耦合固定时间容错控制[J]. 航空学报, 2021, 42(11): 525089. |
MEI Y F, LIAO Y, GONG K J, et al. Fixed-time fault-tolerant control for coupled spacecraft on SE(3)[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525089 (in Chinese). | |
18 | 袁利, 马广富, 董经纬, 等. 航天器近距离交会的固定时间终端滑模控制[J]. 宇航学报, 2018, 39(2): 195-205. |
YUAN L, MA G F, DONG J W, et al. Fixed-time terminal sliding mode control for close-range rendezvous[J]. Journal of Astronautics, 2018, 39(2): 195-205 (in Chinese). | |
19 | ZHANG N. A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance[J]. Aerospace Science and Technology, 2019, 86: 204-214. |
20 | 郭建国, 鲁宁波, 周军. 高超声速飞行器有限时间耦合模糊控制[J]. 航空学报, 2020, 41(11): 623838. |
GUO J G, LU N B, ZHOU J. Fuzzy control of finite time attitude coupling in hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 623838 (in Chnese). | |
21 | 刘璟龙, 张崇峰, 邹怀武, 等. 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报, 2021, 42(1): 523899. |
LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 523899 (in Chinese). | |
22 | DOU L Q, SU P H, ZONG Q, et al. Fuzzy disturbance observer-based dynamic surface control for air-breathing hypersonic vehicle with variable geometry inlets[J]. IET Control Theory & Applications, 2018, 12(1): 10-19. |
23 | ZHANG H G, HAN J, LUO C M, et al. Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(8): 2289-2300. |
24 | WISE K A, ROY D J B. Agile missile dynamics and control[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(3): 441-449. |
25 | INNOCENTI M, THUKRAL A. Simultaneous reaction jet and aerodynamic control of missile systems: AIAA-1993-3739[R]. Reston: AIAA, 1993. |
26 | ZOU A M. Fixed-time attitude tracking control for rigid spacecraft[J]. Automatica, 2020, 113: 108792. |
27 | ZHANG Y, TANG S J, GUO J. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence[J]. International Journal of Robust and Nonlinear Control, 2018, 28(8): 2996-3014. |
28 | 赵国荣, 李晓宝, 刘帅, 等. 自适应非奇异快速终端滑模固定时间收敛制导律[J]. 北京航空航天大学学报, 2019, 45(6): 1059-1070. |
ZHAO G R, LI X B, LIU S, et al. Adaptive nonsingular fast terminal sliding mode guidance law with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1059-1070 (in Chinese). | |
29 | 马悦悦, 唐胜景, 郭杰. 基于改进Terminal滑模的导弹大角度机动控制[J]. 北京航空航天大学学报, 2016, 42(3): 472-480. |
MA Y Y, TANG S J, GUO J. Large angle maneuvering control for missiles based on improved Terminal sliding mode method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 472-480 (in Chinese). | |
30 | HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. |
31 | CUI L. Adaptive super-twisting trajectory tracking control for an unmanned aerial vehicle under gust winds[J]. Aerospace Science and Technology, 2021, 115: 106833. |
32 | 罗世彬, 吴瑕, 魏才盛. 可重复使用飞行器的保性能姿态跟踪控制方法[J]. 航空学报, 2021, 42(11): 524660. |
LUO S B, WU X, WEI C S. A novel attitude tracking control with guaranteed performance for reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524660 (in Chinese). | |
33 | 刘佳琪, 王伟, 林德福, 等. 考虑驾驶仪动态性能的指令滤波反演制导律[J]. 航空学报, 2020, 41(12): 324123. |
LIU J Q, WANG W, LIN D F, et al. Command filtered backstepping guidance law considering autopilot dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324123 (in Chinese). | |
34 | CAO H Z, XU Y, WANG L X. ESO-based nonlinear flying boom attitude control with the handling qualities requirement[J]. Aerospace Science and Technology, 2022, 120: 107235. |
35 | LI P, YANG H J, LI H B, et al. Nonlinear ESO-based tracking control for warehouse mobile robots with detachable loads[J]. Robotics and Autonomous Systems, 2022, 149: 103965. |
36 | YANG H J, CHENG H, ZUO Z Q, et al. ESO-based lateral control for electrical vehicles with unmodeled tire dynamics on uneven road[J]. Mechanical Systems and Signal Processing, 2022, 177: 109132. |
37 | WU R, WEI C Z, YANG F, et al. FxTDO‐based non‐singular terminal sliding mode control for second‐order uncertain systems[J]. IET Control Theory & Applications, 2018, 12(18): 2459-2467. |
/
〈 |
|
〉 |