电子电气工程与控制

试车台供气压缩机组并网控制方法

  • 董彦钊 ,
  • 周延 ,
  • 邹继贤 ,
  • 王信 ,
  • 李晓冬 ,
  • 崔洪帅
展开
  • 1.西安交通大学 能源与动力工程学院,西安 710049
    2.中国航发四川燃气涡轮研究院,绵阳 621703

收稿日期: 2022-03-31

  修回日期: 2022-04-25

  录用日期: 2022-05-24

  网络出版日期: 2022-06-08

基金资助

中国航发四川燃气涡轮研究院稳定支持项目(GJCZ?0013?19)

Grid-connection control method for air supply compressor unit of altitude test facility

  • Yanzhao DONG ,
  • Yan ZHOU ,
  • Jixian ZOU ,
  • Xin WANG ,
  • Xiaodong LI ,
  • Hongshuai CUI
Expand
  • 1.School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China
    2.AECC Sichuan Gas Turbine Establishment,Mianyang 621703,China

Received date: 2022-03-31

  Revised date: 2022-04-25

  Accepted date: 2022-05-24

  Online published: 2022-06-08

Supported by

Stability Support Project of AECC Sichuan Gas Turbine Establishment(GJCZ-0013-19)

摘要

针对中国试车台供气压缩机组并网主要采用人工操作的现状,提出一种基于规则的专家系统,开展了供气压缩机组的并网仿真及相关验证实验。基于某型试车台供气压缩机组的结构,构建机组中压缩机、管网、换热器以及各个不同口径蝶阀的动态仿真模型;基于蝶阀连续动作阀位信号构建蝶阀执行机构动态模型;分析历史运行数据,构建基于规则的专家系统。在MATLAB/Simulink平台上搭建试车台供气压缩机组的并网仿真模型,进行并网控制仿真,并进行实验验证。实验结果表明,压缩机入口压力平均相对误差为3.12%,压缩机出口压力平均相对误差为0.44%,压比平均相对误差为3.23%。并网过程中实际机组最大压比为3.69,最小压比为2.27,满足机组安全要求,证明该控制策略具备可靠性。

本文引用格式

董彦钊 , 周延 , 邹继贤 , 王信 , 李晓冬 , 崔洪帅 . 试车台供气压缩机组并网控制方法[J]. 航空学报, 2023 , 44(9) : 327221 -327221 . DOI: 10.7527/S1000-6893.2022.27221

Abstract

In view of the situation that the grid-connection of air supply compressor units of the Altitude Test Facility (ATF) in China mainly adopts manual operation, an expert system based on manual operation experience was proposed, and the grid-connection simulation and related experiments were conducted. We developed dynamic simulation models for the compressor, ducting, heat exchanger and butterfly valves of different diameters, a dynamic simulation model of the butterfly valve actuator based on the continuous action position signal of the butterfly valve, as well as a rule-based expert system based on a historical operating dataset. The dynamic simulation model of the air supply compressor unit of the ATF was built with the MATLAB/Simulink platform, and a grid-connection control simulation was carried out. Experimental results indicate that the average relative errors of the compressor inlet pressure, compressor outlet pressure, and the pressure ratio were 3.12%, 0.44%, and 3.23%, respectively. In the process of grid-connection, the maximum and minimum pressure ratios in the experiment were 3.69 and 2.27, respectively, satisfying the safety requirements of the unit and proving the reliability of the control strategy.

参考文献

1 SMALLEY R R. Development of a digital control system for a spacecraft propulsion test facility[C]∥Proceedings of the 18th International ISA Aerospace Instrumentation Symposium. Miami:Instrument Society of America,1972: 69-72.
2 ASHWOOD P F. An altitude test facility for large turbofan engines[J]. Journal of Aircraft197310(8): 468-474.
3 KAMYKOWSKI R, JERNIGAN T, DUESTERHA-US D. Current and future air handling capabilities of the AEDC Aeropropulsion System Test Facility (ASTF)[C]∥25th Plasmadynamics and Lasers Conference. Reston: AIAA, 1994.
4 WHITEHEAD B E, YILMAZ C, MCCORMICK J, et al. Development and characterization of the purdue altitude chamber facility for 100 lbf scale thrusters[C]∥ AIAA Propulsion and Energy 2019 Forum. Reston: AIAA, 2019.
5 ROBERTS J, GUIDONE J, MANCUSO B, et al. Engine testing at simulated altitude conditions[C]∥29th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1993.
6 BICKFORD R, MALLOY D. Ground test facility implementation of a real-time turbine engine diagnostic system[C]∥41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005.
7 DAVIS M, MONTGOMERY P. A flight simulation vision for aeropropulsion altitude ground test facilities[J]. Journal of Engineering for Gas Turbines and Power2005127(1): 8-17.
8 ROSE B R J. A numerical optimization of high altitude testing facility for wind tunnel experiments[J]. Chinese Journal of Aeronautics201528(3): 636-648.
9 MONTGOMERY P A, BURDETTE R, KRUPP B. A real-time turbine engine facility model and simulation for test operations modernization and integration[C]∥Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air. New York: ASME, 2000.
10 BARTH F M, STAUDACHER S, SCHIEWE C. Altitude test facility humidity control to generate defined icing conditions[J]. Journal of Engineering for Gas Turbines and Power2020142(2): 021002.
11 HUFFMAN B, LAVELLE T, OWEN A. An NPSS model of a proposed altitude test facility[C]∥49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
12 DAVIS M W. Analysis of aeropropulsion test facility aerodynamic and structual issues using compression system numerical simulations[C]∥Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME,2014.
13 SCHMIDT K, MERTEN R, MENRATH M, et al. Adaptation of the stuttgart university altitude test facility for BR700 core demonstrator engine tests [C]∥ASME International Gas Turbine & Aeroengine Congress & Exhibition. New York: ASME, 1998.
14 BORAIRI M, VAN EVERY D. Design and commissioning of a multivariable control system for a gas turbine engine test facility[C]∥25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2006.
15 DAI Z, CUI Y. Dynamic simulation studies of control design for engine bleed air test facility[EB/OL]. .
16 PACHLHOFER P M, PANEK J W, DICKI D J, et al. Advances in engine test capabilities at the NASA Glenn research center’s propulsion systems laboratory[C]∥ Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2008.
17 DAVIS M, ALAN H, BEALE D. An argument for enhancement of the current inlet distortion ground test practice for aircraft gas turbine engines[J]. Journal of Turbomachinery2001124(2):235-241.
18 MONTGOMERY P, BURDETTE R, KLEPPER J, et al. Evolution of a turbine engine test facility to meet the test needs of future aircraft systems[C]∥Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. New York: ASME, 2002.
19 MONTGOMERY P A, BURDETTE R, WILHITE L, et al. Modernization of a turbine engine test facility utilizing a real-time facility model and simulation[C]∥ ASME Turbo Expo 2001: Power for Land, Sea, and Air. New York: ASME,2001.
20 CAMPOREALE S M, FORTUNATO B, MASTROVI? TO M. A high-fidelity real-time simulation code of gas turbine dynamics for control applications[C]∥Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air.New York: ASME, 2002: 169-182.
21 张松, 郭迎清, 侯敏杰, 等. 复合控制技术在高空台进排气调压系统中的技术研究[J]. 测控技术200928(11): 29-33.
  ZHANG S, GUO Y Q, HOU M J, et al. Research of composite control technology on inlet/exhaust pressure adjustment system of simulated altitude platform[J]. Measurement & Control Technology200928(11): 29-33 (in Chinese).
22 但志宏, 侯敏杰, 石小江, 等. 大流量航空发动机高空模拟进气压力智能与复合控制技术[J]. 燃气涡轮试验与研究201124(2): 13-16.
  DAN Z H, HOU M J, SHI X J, et al. Research of inlet pressure intelligence and compound control technology on aero-engine altitude simulating tests[J]. Gas Turbine Experiment and Research201124(2): 13-16 (in Chinese).
23 张松, 郭迎清, 但志宏, 等. 高空台进排气调压系统半物理仿真试车台[J]. 计算机仿真201027(6): 70-73.
  ZHANG S, GUO Y Q, DAN Z H, et al. Semi-physical simulation test stand on inlet/exhaust pressure adjustment system of simulated altitude platform[J]. Computer Simulation201027(6): 70-73 (in Chinese).
24 张松, 郭迎清, 赵涌, 等. 进排气调压系统半物理仿真程序的设计与实现[J]. 计算机测量与控制201018(2): 401-403.
  ZHANG S, GUO Y Q, ZHAO Y, et al. Design and realization of semi-physical simulation program in inlet/exhaust pressure adjustment system[J]. Computer Measurement & Control201018(2): 401-403 (in Chinese).
25 朱美印, 王曦, 裴希同, 等. 飞行环境模拟系统多容腔流-固传热建模[J]. 推进技术202041(12): 2848-2859.
  ZHU M Y, WANG X, PEI X T, et al. Multi-volume fluid-solid heat transfer modeling for flight environment simulation system[J]. Journal of Propulsion Technology202041(12): 2848-2859 (in Chinese).
26 朱美印, 王曦, 但志宏, 等. 高空台进气控制系统压力PI增益调度控制研究[J]. 推进技术201940(4): 902-910.
  ZHU M Y, WANG X, DAN Z H, et al. Pressure PI gain scheduling control research for altitude ground test facilities air intake control system[J]. Journal of Propulsion Technology201940(4): 902-910 (in Chinese).
27 朱美印, 王曦, 张松, 等. 基于LMI极点配置的高空台飞行环境模拟系统PI增益调度控制研究[J]. 推进技术201940(11): 2587-2597.
  ZHU M Y, WANG X, ZHANG S, et al. PI gain scheduling control for flight environment simulation system of altitude ground test facilities based on LMI pole assignment[J]. Journal of Propulsion Technology201940(11): 2587-2597 (in Chinese).
28 朱美印, 张松, 但志宏, 等. 高空台飞行环境模拟腔μ综合控制设计[J]. 航空动力学报201732(12): 3039-3048.
  ZHU M Y, ZHANG S, DAN Z H, et al. μ synthesis control design of altitude ground test facilities’ flight environment simulation volume[J]. Journal of Aerospace Power201732(12): 3039-3048 (in Chinese).
29 朱美印, 王曦, 裴希同, 等. 高空台飞行环境模拟系统温度延时不确定性μ综合设计[J]. 推进技术202041(8): 1861-1870.
  ZHU M Y, WANG X, PEI X T, et al. Temperature delay uncertainty μ synthesis for flight environment simulation system of altitude ground test facilities[J]. Journal of Propulsion Technology202041(8): 1861-1870 (in Chinese).
30 LIAO S H. Expert system methodologies and applications—A decade review from 1995 to 2004[J]. Expert Systems with Applications200528(1): 93-103.
31 BUCHANAN B, FEIGENBAUM E A, LEDERBERG J. Heuristic DENDRAL—A program for generating explanatory hypotheses in organic chemistry[J]. Machine Intelligence19684: 209-254.
32 LYU J R, CHEN M N.Automated visual inspection expert system for multivariate statistical process control chart[J]. Expert Systems with Applications200936(3): 5113-5118.
33 WANG Y D, LIM E P, HUANG S Y. Efficient mining of group patterns from user movement data[J]. Data & Knowledge Engineering200657(3): 240-282.
34 ZHENG H F, CHEN L D, HAN X Z,et al. Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions[J]. Agriculture, Ecosystems & Environment, 2009132(1-2): 98-105.
35 SHORTLIFFE E H. Computer-based medical consul-tations: MYCIN[J]. Journal of Clinical Engineering1976388(1): 243-260.
36 HATZILYGEROUDIS I, PRENTZAS J. Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems[J]. Expert Systems with Applications200427(1): 63-75.
37 HATZILYGEROUDIS I, PRENTZSA J. Using a hybrid rule-based approach in developing an intelligent tutoring system with knowledge acquisition and update capabilities[J]. Expert Systems with Applications200426(4): 477-492.
38 SHIUE W, LI S T, CHEN K J. A frame knowledge system for managing financial decision knowledge[J]. Expert Systems with Applications200835(3): 1068-1079.
39 SORENSON D, GRISSOM C K, CARPENTER L. A frame-based representation for a bedside ventilator weaning protocol[J]. Journal of Biomedical Informatics200841(3): 461-468.
40 CAI J F, HE Z H, CHEN C W. A novel frame-level bit allocation based on two-pass video encoding for low bit rate video streaming applications[J]. Journal of Visual Communication and Image Representation200617(4): 783-798.
41 TYLER M, HAASE S, KACZMAREK K, et al. Development of an electrotactile glove for display of graphics for the blind: Preliminary results[C]∥Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society. Piscataway: IEEE Press, 2002: 2439-2440.
42 KOLODNER J L. Case-based reasoning[M]. San Mateo: Morgan Kaufmann Publishers, 1993.
43 GARDAN N, GARDAN Y. An application of knowledge based modelling using scripts[J]. Expert Systems with Applications200325(4): 555-568.
44 MARTI?N-BARANERA M, SANCHO J J, SANZ F. Controlling for chance agreement in the validation of medical expert systems with no gold standard: PNEUMON-IA and RENOIR revisited[J]. Computers and Biomedical Research200033(6): 380-397.
45 ABACOUMKIN C, BALLIS A. Development of an expert system for the evaluation of conventional and innovative technologies in the intermodal transport area[J]. European Journal of Operational Research2004152(2): 410-419.
46 CHEUNG Y, HONG G M, ANG K K, et al. A dynamic project allocation algorithm for a distributed expert system[J]. Expert Systems with Applications200426(2): 225-232.
47 LIAU C K, YANG T C K, TSAI M T. Expert system of a crude oil distillation unit for process optimization using neural networks[J]. Expert Systems with Applications200426(2): 247-255.
48 DELEN D, SHARDA R, KUMAR P. Movie forecast Guru: A web-based DSS for Hollywood managers[J]. Decision Support Systems200743(4): 1151-1170.
49 LI D L, FU Z T, DUAN Y Q. Fish-expert: A web-based expert system for fish disease diagnosis[J]. Expert Systems with Applications200223(3): 311-320.
50 GREITZER E M. Surge and rotating stall in axial flow compressors—Part I: Theoretical compression system model[J]. Journal of Engineering for Power197698(2): 190-198.
51 GRAVDAHL J T, WILLEMS F, DE JAGER B, et al. Modeling for surge control of centrifugal compressors: Comparison with experiment[C]∥Proceedings of the 39th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2002: 1341-1346.
52 ZHU M Y, WANG X. An integral type μ synthesis method for temperature and pressure control of flight environment simulation volume[C]∥ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME,2017.
53 裴希同, 朱美印, 张松, 等. 一种特种阀流量特性计算的经验公式迭代方法[J]. 燃气涡轮试验与研究201629(5): 35-39.
  PEI X T, ZHU M Y, ZHANG S, et al. An iterative method of empirical formula for the calculation of special valve flow characteristics[J]. Gas Turbine Experiment and Research201629(5): 35-39 (in Chinese).
54 唐向清, 魏建华. 专家系统与专家智能控制[J]. 现代制造工程2008(2): 84-87.
  TANG X Q, WEI J H. Expert system and expert intelligent control[J]. Modern Manufacturing Engineering2008(2): 84-87 (in Chinese).
55 鲁守荣. 基于专家系统的混合动力汽车控制系统设计[J]. 工业控制计算机202134(11): 79-80.
  LU S R. Design of control system for hybrid electric vehicle based on expert system[J]. Industrial Control Computer202134(11): 79-80 (in Chinese).
文章导航

/