流体力学与飞行力学

ARJ21飞机尾涡在侧风条件下的近地演化数值模拟

  • 张钧铎 ,
  • 左青海 ,
  • 林孟达 ,
  • 黄伟希 ,
  • 潘卫军 ,
  • 崔桂香
展开
  • 1. 清华大学 航天航空学院, 北京 100084;
    2. 中国民用航空飞行学院, 广汉 618307

收稿日期: 2020-12-03

  修回日期: 2021-03-12

  网络出版日期: 2022-06-01

基金资助

国家自然科学基金民航联合基金(U1733203);民航安全能力建设项目(TM2019-16-1/3)

Numerical simulation on near-field evolution of wake vortices of ARJ21 plane with crosswind

  • ZHANG Junduo ,
  • ZUO Qinghai ,
  • LIN Mengda ,
  • HUANG Weixi ,
  • PAN Weijun ,
  • CUI Guixiang
Expand
  • 1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
    2. Civil Aviation Flight University of China, Guanghan 618307, China

Received date: 2020-12-03

  Revised date: 2021-03-12

  Online published: 2022-06-01

Supported by

Civil Aviation Joint Fund of NSFC (U1733203); Civil Aviation Safety Capacity Building Project (TM 2019-16-1/3)

摘要

尾流间隔是飞机起降安全的重要保障,也是制约机场效率的重要因素之一,而飞机尾涡的近地演化特性与规律是制定尾流间隔系统的基础和依据。因此,研究国产机型的尾涡近地演化特性与规律具有重要的现实意义。应用升力面模型初始化尾涡流场,采用自适应网格大涡模拟技术数值研究ARJ21客机尾涡在侧风条件下的近地演化过程,并分析在不同侧风条件下尾涡的演化与衰减特性。数值结果显示上游涡与下游涡演化具有不对称性,其中下游涡衰减更快,但移动距离更远,并且侧风越强尾涡衰减越快。此外,根据ARJ21尾涡的数值结果分析了不同机型跟随ARJ21进近时的安全性,发现重型机可不考虑其尾涡影响,而中型机和轻型机需根据气象条件选择合适的最小尾流间隔。

本文引用格式

张钧铎 , 左青海 , 林孟达 , 黄伟希 , 潘卫军 , 崔桂香 . ARJ21飞机尾涡在侧风条件下的近地演化数值模拟[J]. 航空学报, 2022 , 43(5) : 125043 -125043 . DOI: 10.7527/S1000-6893.2021.25043

Abstract

Wake separation is crucial to the security of aircraft landing, and is also an important factor of improving airport efficiency. The characteristics of near-field evolution of wake vortices is the foundation of the design of wake separation system. Therefore, it is of great practical significance to investigate the near-field evolution of wake vortices of domestic aircraft. In the present study, the effect of crosswind on the near-field evolution of wake vortices of ARJ21 plane, initialized by the lift-drag model, is analyzed by using the large eddy simulation based on adaptive mesh. The numerical results show that the evolution of the upstream vortex and downstream vortex is asymmetric. The downstream vortex decays more rapidly and translates farther than the upstream vortex, and the wake vortices decay more rapidly as the cross-wind gets stronger. In addition, the security of the following plane after ARJ21 is also analyzed based on the numerical results of the ARJ21 plane. It is found that the heavy plane is not affected by the wake vortices of ARJ21, whereas the medium-sized and light planes require adequate wake separation according to the weather condition.

参考文献

[1] 赵旭东, 贾荣珍. ARJ21飞机工程模拟器关键技术研究[J]. 系统仿真学报, 2009, 21(21):6856-6858, 6864. ZHAO X D, JIA R Z. Study on key technology of ARJ21 aircraft engineering simulator[J]. Journal of System Simulation, 2009, 21(21):6856-6858, 6864(in Chinese).
[2] 谢佼. 国产飞机ARJ21已累计安全飞行超10000小时:运送旅客近32万人次[N]. 人民日报, 2019-04-03(1). XIE J. The domestic ARJ21 aircraft has accumulated more than 10,000 hours of safe flight[N]. People's Daily, 2019-04-03(1) (in Chinese).
[3] 余建斌, 沈文敏, 刘潺. ARJ21国产商用飞机运营客户增至7家[N]. 人民日报, 2020-11-11(1). YU J B, SHEN W M, LIU C. The number of ARJ21 domestic commercial aircraft operating customers increased to 7[N]. People's Daily, 2020-11-11(1) (in Chinese).
[4] LIU F, LIU X Z, MOU M J, et al. Safety assessment of approximate segregated parallel operation on closely spaced parallel runways[J]. Chinese Journal of Aeronautics, 2019, 32(2):463-476.
[5] PERRY R, HINTON D, STUEVER R, et al. NASA wake vortex research for aircraft spacing[C]//35th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1997.
[6] O'CONNOR C J, RUTISHAUSER D K. Enhanced airport capacity through safe, dynamic reductions in aircraft separation:NASA's Aircraft Vortex Spacing System (AVOSS):2001-211052[R]. Washington, D.C.:NASA, 2001.
[7] HOLZÄPFEL F, GERZ T, FRECH M, et al. The wake vortex prediction and monitoring system WSVBS part I:Design[J]. Air Traffic Control Quarterly, 2009, 17(4):301-322.
[8] GERZ T, HOLZÄPFEL F, FRECH M, et al. The wake vortex prediction and monitoring system WSVBS part II:Performance and ATC integration at Frankfurt airport[J]. Air Traffic Control Quarterly, 2009, 17(4):323-346.
[9] MATAYOSHI N. Dynamic wake vortex separation according to weather conditions[C]//2013 Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2013.
[10] MATAYOSHI N, YOSHIKAWA E. Dynamic wake vortex separation combining with AMAN/DMAN concept[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2015.
[11] 林孟达, 崔桂香, 张兆顺, 等. 飞机尾涡演变及快速预测的大涡模拟研究[J]. 力学学报, 2017, 49(6):1185-1200. LIN M D, CUI G X, ZHANG Z S, et al. Large eddy simulation on the evolution and the fast-time prediction of aircraft wake vortices[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6):1185-1200(in Chinese).
[12] BURNHAM D C, HALLOCK J N. Chicago monostatic acoustic vortex sensing system:Volume IV, Wake vortex decay:DOT/FAA/RD-79-103 IV[R]. Washington, D.C.:Department of Transportation, 1982.
[13] 鲍锋, 刘锦生, 朱睿, 等. 飞机尾涡系Rayleigh-Ludwieg不稳定性实验研究[J]. 航空学报, 2015, 36(7):2166-2176. BAO F, LIU J S, ZHU R, et al. Experimental study on Rayleigh-Ludwieg instability of aircraft wake vortex[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2166-2176(in Chinese).
[14] 邱思逸, 程泽鹏, 向阳, 等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报, 2019, 40(8):122712. QIU S Y, CHENG Z P, XIANG Y, et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122712(in Chinese).
[15] CHENG Z P, QIU S Y, XIANG Y, et al. Instability characteristics of a co-rotating wingtip vortex pair based on bi-global linear stability analysis[J]. Chinese Journal of Aeronautics, 2021, 34(5):1-16.
[16] ROBINS R E, DELISI D P, GREENE G C. Algorithm for prediction of trailing vortex evolution[J]. Journal of Aircraft, 2001, 38(5):911-917.
[17] 林孟达. 飞机尾涡演化特性与安全预测的大涡模拟研究[D]. 北京:清华大学, 2016:1-83. LIN M D. Study on aircraft wake vortex evolution and safety prediction by large eddy simulation[D]. Beijing:Tsinghua University, 2016:1-83(in Chinese).
[18] ZHENG Z C, ASH R L. Study of aircraft wake vortex behavior near the ground[J]. AIAA Journal, 1996, 34(3):580-589.
[19] HOLZÄPFEL F, STEEN M. Aircraft wake-vortex evolution in ground proximity:Analysis and parameterization[J]. AIAA Journal, 2007, 45(1):218-227.
[20] PROCTOR F, HAMILTON D, HAN J. Wake vortex transport and decay in ground effect-Vortex linking with the ground[C]//38th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2000.
[21] PROCTOR F. Numerical study of a long-lived, isolated wake vortex in ground effect[C]//6th AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2014.
[22] LIN M D, HUANG W X, ZHANG Z S, et al. Numerical study of aircraft wake vortex evolution near ground in stable atmospheric boundary layer[J]. Chinese Journal of Aeronautics, 2017, 30(6):1866-1876.
[23] ZHANG J D, ZUO Q H, LIN M D, et al. Evolution of vortices in the wake of an ARJ21 airplane:Application of the lift-drag model[J]. Theoretical and Applied Mechanics Letters, 2020, 10(6):419-428.
[24] MENEVEAU C, LUND T S, CABOT W H. A Lagrangian dynamic subgrid-scale model of turbulence[J]. Journal of Fluid Mechanics, 1996, 319:353.
[25] HOLZÄPFEL F, GERZ T, BAUMANN R. The turbulent decay of trailing vortex pairs in stably stratified environments[J]. Aerospace Science and Technology, 2001, 5(2):95-108.
[26] HENNEMANN I, HOLZÄPFEL F. Large-eddy simulation of aircraft wake vortex deformation and topology[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2011, 225(12):1336-1350.
[27] MISAKA T, HOLZÄPFEL F, GERZ T. Large-eddy simulation of aircraft wake evolution from roll-up until vortex decay[J]. AIAA Journal, 2015, 53(9):2646-2670.
[28] LIN M D, CUI G X, ZHANG Z S. Large eddy simulation of aircraft wake vortex with self-adaptive grid method[J]. Applied Mathematics and Mechanics, 2016, 37(10):1289-1304.
[29] GNOFFO P A. A finite-volume, adaptive grid algorithm applied to planetary entry flowfields[J]. AIAA Journal, 1983, 21(9):1249-1254.
[30] LIN M D, CUI G X, ZHANG Z S. A new vortex sheet model for simulating aircraft wake vortex evolution[J]. Chinese Journal of Aeronautics, 2017, 30(4):1315-1326.
[31] KEYE S. Fluid-structure coupled analysis of a transport aircraft and flight-test validation[J]. Journal of Aircraft, 2011, 48(2):381-390.
[32] 吴子牛, 王兵, 周睿, 等. 空气动力学[M]. 北京:清华大学出版社, 2007. WU Z N, WANG B, ZHOU R, et al. Aerodynamics[M]. Beijing:Tsinghua University Press, 2007(in Chinese).
[33] KROO I. Drag due to lift:concepts for prediction and reduction[J]. Annual Review of Fluid Mechanics, 2001, 33(1):587-617.
[34] 赵鸣. 大气边界层动力学[M]. 北京:高等教育出版社, 2006. ZHAO M. Dynamics of atmospheric boundary layer[M]. Beijing:Higher Education Press, 2006(in Chinese).
[35] JARRAUD M. Guide to meteorological instruments and methods of observation (WMO-NO.8)[R]. Geneva World Meteorological Organization, 2008.
[36] HAN J, ARYA S P, SHAOHUA S, et al. An estimation of turbulent kinetic energy and energy dissipation rate based on atmospheric boundary layer similarity theory:NASA CR-2000-210298[R]. Washington,D.C.:2000.
[37] ARYA S P. Atmospheric boundary layer and its parameterizationwind climate in cities[M]. Amsterdam:Springer, 1995.
[38] ROGALLO R S. Numerical experiments in homogeneous turbulence:NASA TM-8131[R]. Washington, D.C.:NASA, 1981.
[39] BECHARA W, BAILLY C, LAFON P, et al. Stochastic approach to noise modeling for free turbulent flows[J]. AIAA Journal, 1994, 32(3):455-463.
[40] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285:69-94.
[41] ROBINS R E, DELISI D P, GREENE G C. Algorithm for prediction of trailing vortex evolution[J]. Journal of Aircraft, 2001, 38(5):911-917.
[42] HOLZÄPFEL F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 2003, 40(2):323-331.
[43] CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal, 1970, 8(12):2172-2179.
[44] MISAKA T, HOLZÄPFEL F, HENNEMANN I, et al. Vortex bursting and tracer transport of a counter-rotating vortex pair[J]. Physics of Fluids, 2012, 24(2):025104.
[45] STEPHAN A, HOLZÄPFEL F, MISAKA T. Aircraft wake-vortex decay in ground proximity-physical mechanisms and artificial enhancement[J]. Journal of Aircraft, 2013, 50(4):1250-1260.
[46] SCHWARZ C W, HAHN K U. Full-flight simulator study for wake vortex hazard area investigation[J]. Aerospace Science and Technology, 2006, 10(2):136-143.
[47] LANG S, TITTSWORTH J, BRYANT W, et al. Progress on an ICAO wake turbulence Re-categorization effort[C]//AIAA Atmospheric and Space Environments Conference. Reston:AIAA, 2010.
文章导航

/