可压缩壁湍流热力学量统计特性分析
收稿日期: 2022-03-30
修回日期: 2022-04-24
录用日期: 2022-05-05
网络出版日期: 2022-05-19
基金资助
国家重点研发计划(2019YFA0405200);空气动力学国家重点实验室创新基金(SKLA-JBKYC190109);国家数值风洞工程;国家自然科学基金(92052301)
Statistical properties of thermodynamic fluctuations in compressible wall⁃bounded turbulence
Received date: 2022-03-30
Revised date: 2022-04-24
Accepted date: 2022-05-05
Online published: 2022-05-19
Supported by
National Key Research and Development Plan of China(2019YFA0405200);Foundation of State Key Laboratory of Aerodynamics(SKLA-JBKYC190109);National Numerical Windtunnel Project;National Natural Science Foundation of China(92052301)
可压缩壁湍流中的速度脉动统计特性已经得到了较为广泛的研究,而热力学量脉动及其互相关的研究依然较少。为了探明压缩性对热力学量脉动的影响机制,对直接数值模拟数据库进行分析,对可压缩槽道湍流中温度、熵、密度和压力等热力学量的相干结构和统计特性随法向高度、马赫数和壁温的变化规律开展系统研究。统计结果表明,在壁面附近,压缩性效应对相干结构形态和统计特性的影响十分明显,主要表现为与强压缩事件相关的正密度脉动和压力脉动更强,使得其近壁处的偏斜度和平坦度更高,具有更强的不对称性和间歇性。而在远离壁面的外区,温度、熵和密度脉动的相干结构和统计特性随马赫数和壁温变化趋势类似,具有较强的相关性。速度脉动对温度和熵脉动的输运作用类似,表明可采用与温度脉动模型化相同的方法对熵脉动进行模型化。
傅亚陆 , 袁先旭 , 刘朋欣 , 余明 . 可压缩壁湍流热力学量统计特性分析[J]. 航空学报, 2023 , 44(9) : 127217 -127217 . DOI: 10.7527/S1000-6893.2022.27217
The statistical properties of velocity fluctuations have been widely investigated in compressible wall-bounded turbulence. However, fluctuations of thermodynamic variables and their correlations require further understanding. This study exploits the direct numerical simulation databases to systematically investigate the effects of Mach numbers and wall temperatures on coherent structures and statistical properties (e.g., root-mean-square, skewness/flatness factor, correlation) of thermodynamic variables (e.g., temperature, entropy, density and pressure). It is found that the compressibility effects have significant influence on coherent structures and statistical properties in the near-wall region, manifested as stronger positive density/pressure fluctuations associated with strong compressive events, resulting in higher skewness and flatness that indicate stronger asymmetry and intermittency. Nevertheless, in the outer region, coherent structures and statistical properties of temperature/entropy/density fluctuations with different Mach numbers and wall temperatures show a similar trend with a strong correlation. In addition, velocity fluctuations have similar effects on the transport of temperature/entropy fluctuations, indicating that entropy fluctuations can be modeled in the same way as temperature fluctuations.
1 | YU M, XU C X, PIROZZOLI S. Genuine compressibility effects in wall-bounded turbulence[J]. Physical Review Fluids, 2019, 4(12): 123402. |
2 | YU M, XU C X. Predictive models for near-wall velocity and temperature fluctuations in supersonic wall-bounded turbulence[J]. Journal of Fluid Mechanics, 2022, 937: A32. |
3 | 陈十一, 王建春, 郑钦敏, 等. 可压缩湍流的多尺度分析[J]. 空气动力学学报, 2021, 39(1): 1-17. |
CHEN S Y, WANG J C, ZHENG Q M, et al. Multi-scale analyses of compressible turbulence[J]. Acta Aerodynamica Sinica, 2021, 39(1): 1-17 (in Chinese). | |
4 | DONZIS D A, JAGANNATHAN S. Fluctuations of thermodynamic variables in stationary compressible turbulence[J]. Journal of Fluid Mechanics, 2013, 733: 221-244. |
5 | YUAN X X, FU Y L, CHEN J Q, et al. Supersonic turbulent channel flows over spanwise-oriented grooves[J]. Physics of Fluids, 2022, 34(1): 016109. |
6 | SUN D, GUO Q L, YUAN X X, et al. A decomposition formula for the wall heat flux of a compressible boundary layer[J]. Advances in Aerodynamics, 2021, 3(1): 33. |
7 | 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J]. 航空学报, 2022, 43(1): 124877. |
LIU P X, YUAN X X, SUN D, et al. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124877 (in Chinese). | |
8 | QI H, LI X L, YU C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J].Advances in Aerodynamics, 2021, 3(1): 1-21. |
9 | 刘朋欣, 袁先旭, 梁飞, 等. 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报, 2021, 42(S1): 726338. |
LIU P X, YUAN X X, LIANG F, et al. Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726338 (in Chinese). | |
10 | PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3): 530-545. |
11 | ZHANG C, DUAN L, CHOUDHARI M M. Direct numerical simulation database for hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11): 4297-4311. |
12 | TONG F L, DONG S W, LAI J, et al. Wall shear stress and wall heat flux in a supersonic turbulent boundary layer[J]. Physics of Fluids, 2022, 34(1): 015127. |
13 | 刘朋欣, 李辰, 孙东,等. 考虑化学非平衡效应的高温湍流边界层统计特性分析 [J]. 空气动力学学报, 2022, 40(4): 124-131. |
LIU P X, LI C, SUN D, et al. Statistical characteristics of high-temperature turbulent boundary layer considering chemical non-equilibrium [J]. Acta Aerodynamica Sinica, 2022, 40(4): 124-131 (in Chinese). | |
14 | COLEMAN G N, KIM J, MOSER R D. A numerical study of turbulent supersonic isothermal-wall channel flow[J]. Journal of Fluid Mechanics, 1995, 305: 159-183. |
15 | HUANG P G, COLEMAN G N, BRADSHAW P. Compressible turbulent channel flows: DNS results and modelling[J]. Journal of Fluid Mechanics, 1995, 305: 185-218. |
16 | MODESTI D, PIROZZOLI S. Reynolds and Mach number effects in compressible turbulent channel flow[J]. International Journal of Heat and Fluid Flow, 2016, 59: 33-49. |
17 | YU M, XU C X. Compressibility effects on hypersonic turbulent channel flow with cold walls[J]. Physics of Fluids, 2021, 33(7): 075106. |
18 | MODESTI D, PIROZZOLI S. Direct numerical simulation of supersonic pipe flow at moderate Reynolds number[J]. International Journal of Heat and Fluid Flow, 2019, 76: 100-112. |
19 | WEI L, POLLARD A. Direct numerical simulation of compressible turbulent channel flows using the discontinuous Galerkin method[J]. Computers & Fluids, 2011, 47(1): 85-100. |
20 | WEI L, POLLARD A. Interactions among pressure, density, vorticity and their gradients in compressible turbulent channel flows[J]. Journal of Fluid Mechanics, 2011, 673: 1-18. |
21 | GEROLYMOS G A, Pressure VALLET I., density, temperature and entropy fluctuations in compressible turbulent plane channel flow[J]. Journal of Fluid Mechanics, 2014, 757: 701-746. |
22 | GEROLYMOS G A, VALLET I. Correlation coefficients of thermodynamic fluctuations in compressible aerodynamic turbulence[J]. Journal of Fluid Mechanics, 2018, 851: 447-478. |
23 | LI X L, FU D X, MA Y W, et al. Direct numerical simulation of compressible turbulent flows[J]. Acta Mechanica Sinica, 2010, 26(6): 795-806. |
24 | DUAN L, BEEKMAN I, MARTíN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445. |
25 | BERNARDINI M, PIROZZOLI S. Wall pressure fluctuations beneath supersonic turbulent boundary layers[J]. Physics of Fluids, 2011, 23(8): 085102. |
26 | YU M, XU C X, PIROZZOLI S. Compressibility effects on pressure fluctuation in compressible turbulent channel flows[J]. Physical Review Fluids, 2020, 5(11): 113401. |
27 | PUMIR A. A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic turbulence[J]. Physics of Fluids, 1994, 6(6): 2071-2083. |
28 | HU Z W, MORFEY C L, SANDHAM N D. Wall pressure and shear stress spectra from direct simulations of channel flow[J]. AIAA Journal, 2006, 44(7): 1541-1549. |
29 | TAULBEE D, VANOSDOL J. Modeling turbulent compressible flows - The mass fluctuating velocity and squared density: AIAA-1991-0524[R]. Reston: AIAA, 1991. |
30 | KOVASZNAY L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10): 657-674. |
/
〈 |
|
〉 |