机体尾缘形状对高压捕获翼构型亚声速特性影响
收稿日期: 2022-03-29
修回日期: 2022-04-26
录用日期: 2022-05-16
网络出版日期: 2022-05-19
基金资助
国家自然科学基金(12002347);中国科学院基础前沿科学研究计划(ZDBS-LY-JSC005)
Effect of body trailing edge shape on subsonic flow characteristics of high-pressure capturing wing configuration
Received date: 2022-03-29
Revised date: 2022-04-26
Accepted date: 2022-05-16
Online published: 2022-05-19
Supported by
National Natural Science Foundation of China(12002347);Basic Frontier Science Research Program of Chinese Academy of Sciences(ZDBS-LY-JSC005)
基于圆锥-圆台组合平板捕获翼构型,通过改变尾缘展向扩张角,获得一系列不同外形,在典型亚声速(Ma=0.5)来流条件下开展数值计算,并重点分析了机体尾部截面形状和攻角变化对流动特性和气动特性的影响。结果表明:在0°攻角状态下,机体尾截面展向变宽,机体与捕获翼之间的流场区域对来流的扩张减弱,机体圆台上表面的逆压梯度减小,可有效抑制机-翼之间流场内的流动分离现象,同时整机升力系数增大,阻力系数先减小后增大。随攻角增大,机体圆台上表面压力增大,分离区范围逐渐缩小直至消失,机体尾截面展向变宽可加速分离区消失的进程。当攻角进一步增大时,机体背风面出现横向绕流,但机体尾截面展向变宽可以延缓横向绕流的发展。计算结果还表明,随攻角增大整机升力及阻力主要由捕获翼贡献,机体贡献的气动力随攻角变化不敏感,机体尾截面展向变宽对整机焦点位置影响较小。机体下表面几何形状变化对机体与捕获翼之间的区域内流动特性和捕获翼部件的气动力特性无明显影响。
王浩祥 , 肖尧 , 张凯凯 , 李广利 , 常思源 , 田中伟 , 崔凯 . 机体尾缘形状对高压捕获翼构型亚声速特性影响[J]. 航空学报, 2023 , 44(6) : 127215 -127215 . DOI: 10.7527/S1000-6893.2022.27215
Based on the conceptual configuration combining the conical-cone airframe and flat plate capturing wing configuration, a series of different shapes were obtained by changing the side expansion angle of the trailing edge. The configuration was solved by computational fluid dynamics under the condition of typical subsonic flow (Ma=0.5). The results show that, at the angle of attack of 0°, the spanwise section of the body tail widened, the expansion effect of the channel between the body and the capturing wing on the incoming flow was weakened, and the reverse pressure gradient on the upper surface of the body platform was reduced, which could effectively inhibit the flow separation phenomenon in the channel. In addition, the whole vehicle lift coefficient rose, and the drag coefficient first fell and then grew. With the increase of the angle of attack, the pressure on the upper surface of the round platform of the body climbed, while the range of the separation zone gradually declined until it disappeared. Furthermore, the spanwise widening of the tail section of the body could accelerate the disappearance of the separation zone. When the angle of attack increased further, the transverse flow appeared on the leeward side of the body, while the spanwise widening of the body tail section could delay the development of the transverse flow. As the angle of attack increased, the calculation results also show that the lift and drag of the whole machine were mainly attributed to the capturing wing. The aerodynamic force contributed by the body was not sensitive to the change of the angle of attack. The spanwise widening of the body tail section had little effect on the aerodynamic center of the whole vehicle. The geometry change of the lower surface of the body had no significant effect on the flow characteristics in the channel between the body and the capturing wing and the aerodynamic characteristics of the capturing wing.
1 | 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012. |
CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012 (in Chinese). | |
2 | CAITLIN L. Lockheed Martin unveils SR-72[J]. IHS Jane’s Defence Weekly, 2013, 50(46): 6-6. |
3 | 廖孟豪, 李宪开, 窦相民. 美国高超声速作战飞机气动布局演化分析[J]. 航空科学技术, 2020, 31(11): 3-6. |
LIAO M H, LI X K, DOU X M. Evolution analysis of aerodynamic configuration of hypersonic military aircraft in USA[J]. Aeronautical Science & Technology, 2020, 31(11): 3-6 (in Chinese). | |
4 | LOBBIA M, SUZUKI K. Numerical investigation of waverider-derived hypersonic transport configurations[C]∥21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: 3804. |
5 | LOBBIA M, SUZUKI K. Multidisciplinary design optimization of hypersonic transport configurations using waveriders[C]∥19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston AIAA, 2014. |
6 | STEELANT J. Achievements obtained for sustained hypersonic flight within the LAPCAT project[C]∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
7 | STEELANT J. LAPCAT: An EC funded project on sustained hypersonic flight[C]∥57th International Astronautical Congress. Reston: AIAA, 2006. |
8 | CUI K, HU S C, LI G L, et al. Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets[J]. Science China Technological Sciences, 2013, 56(8): 1980-1988. |
9 | XIAO Y, CUI K, LI G Let al. Preliminary study of aerodynamic performance for waverider-based hypersonic vehicles with dorsal mounted engines[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
10 | SZIROCZAK D, Smith H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. |
11 | 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术, 2020, 31(11): 7-13. |
LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology, 2020, 31(11): 7-13 (in Chinese). | |
12 | 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑: 技术科学), 2009, 39(11): 1828-1835. |
WANG F M, DING H H, LEI M F. Aerodynamic characteristics and research of waverider aircraft in wide speed range[J]. Science in China (Series E: Technological Sciences), 2009, 39(11): 1828-1835 (in Chinese). | |
13 | LI S B, HUANG W, WANG Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China Information Sciences, 2014, 57(12): 1-10. |
14 | LI S B. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30(1): 50-65. |
15 | LI S B. Design and investigation on variable Mach number waverider for a wide-speed range[J]. Aerospace Science and Technology, 2018, 76: 291-302. |
16 | LIU J. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number[J]. Acta Astronautica, 2019, 162: 160-167. |
17 | ZHANG T T. A design approach of wide-speed-range vehicles based on the cone-derived theory[J]. Aerospace Science and Technology, 2017, 71: 42-51. |
18 | ZHAO Z T. Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory[J]. Acta Astronautica, 2018, 147: 163-174. |
19 | RODI P. Vortex lift waverider configurations[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
20 | RODI P. The osculating flowfield method of waverider geometry generation[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
21 | LIU C Z, BAI P, CHEN Y X, et al. Research on the design of double swept waverider[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
22 | 崔凯, 李广利, 胡守超, 等. 高速飞行器高压捕获翼气动布局概念研究[J]. 中国科学: 物理学 力学 天文学, 2013, 43(5): 652-661. |
CUI K, LI G L, HU S C, et al. Conceptual studies of the high pressure zone capture wing configuration for high speed air vehicles[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(5): 652-661 (in Chinese). | |
23 | CUI K, LI G L, XIAO Y. Aerodynamic performance study of high pressure zone capture wing configurations[C]∥33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015. |
24 | CUI K, LI G L, XIAO Y, et al. High-pressure capturing wing configurations[J]. AIAA Journal, 2017, 55(6): 1909-1919. |
25 | 李广利, 崔凯, 肖尧, 等. 高压捕获翼前缘型线优化和分析[J]. 力学学报, 2016, 48(4): 877-885. |
LI G L, CUI K, XIAO Y, et al. Leading edge optimization and parameter analysis of high pressure capturing wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885 (in Chinese). | |
26 | 李广利, 崔凯, 肖尧, 等. 高压捕获翼位置设计方法研究[J]. 力学学报, 2016, 48(3): 576-584. |
LI G L, CUI K, XIAO Y, et al. The design method research for the position of high pressure capturing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 576-584 (in Chinese). | |
27 | LI G L, CUI K, XIAO Y, et al. Effects of shock impingement on aerothermal and aerodynamic performance for high-pressure capturing wings[C]∥ 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
28 | CUI K, XIAO Y, XU Y Z, et al. Hypersonic I-shaped aerodynamic configurations[J]. Science China Physics, Mechanics & Astronomy, 2018, 61(2): 024722. |
29 | LI G L, CUI K, XU Y Z, et al. Experimental investigation of a hypersonic I-shaped configuration with a waverider compression surface[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(5): 254721. |
30 | 常思源, 肖尧, 李广利, 等. 翼反角对高压捕获翼构型亚声速气动特性影响分析研究[J]. 力学学报, 2022, 54(10): 2760-2772. |
CHANG S Y, XIAO Y, LI G L, et al. Effect of wing dihedral and anhedral angles on subsonic aerodynamic characteristics of hcw configuration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2760-2772 (in Chinese). | |
31 | 王浩祥, 李广利, 徐应洲, 等. 高压捕获翼构型跨声速流动特性初步研究[J]. 空气动力学学报, 2020, 38(3): 441-447. |
WANG H X, LI G L, XU Y Z, et al. Preliminary study on transonic flow characteristics of a high-pressure capturing wing configuration[J]. Acta Aerodynamica Sinica, 2020, 38(3): 441-447 (in Chinese). | |
32 | 王浩祥, 李广利, 杨靖, 等. 高压捕获翼构型亚跨超流动特性数值研究[J]. 力学学报, 2021, 53(11): 3056-3070. |
WANG H X, LI G L, YANG J, et al. Numerical study on flow characteristics of high-pressure capturing wing configuration at subsonic, transonic and supersonic regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3056-3070 (in Chinese). | |
33 | 李素循. 典型外形高超声速流动特性[M]. 北京: 国防工业出版社, 2007. |
LI S X. Typical hypersonic flow characteristics[M]. Beijing: National Defense Industry Press, 2007 (in Chinese). |
/
〈 |
|
〉 |