脉冲星角位置强度关联测量聚焦光学系统
收稿日期: 2022-03-08
修回日期: 2022-04-02
录用日期: 2022-05-06
网络出版日期: 2022-05-19
基金资助
国家重点研发计划(2017YFB0503300)
Focusing optics for intensity-correlated measurement of pulsar angular position
Received date: 2022-03-08
Revised date: 2022-04-02
Accepted date: 2022-05-06
Online published: 2022-05-19
Supported by
National Key R&D Program of China(2017YFB0503300)
脉冲星导航为未来深空探测与导航提供一种可能途径,采用X射线强度关联方法对脉冲星角位置进行高精度测量,可适应高精度时空基准系统构建的发展需求,从理论上提高导航精度。X射线聚焦光学系统是脉冲星高精度测量与探测设备的核心部件,通过高效率聚焦实现对脉冲星极弱X射线光子流量的增强。首先,针对脉冲星角位置强度关联测量地面试验需求,开展了多层嵌套X射线聚焦光学系统的光学设计与性能分析,获得了设计参数对有效面积和角分辨率的影响关系,确定了反射镜几何参数与反射面材料;其次,确定了聚焦光学系统的总体制造误差标准,对高频误差和中低频误差分别进行了分配;然后,采用电铸镍复制工艺加工了超光滑芯轴与反射镜,测试了芯轴的粗糙度和面形误差,利用北京同步辐射光源测试了反射镜的反射率;最后,搭建了原位精密装调装置,完成了多层嵌套反射镜精密装调,实测角分辨率达到12.16″。经强度关联测量试验验证,聚焦光学系统显著提高了探测器接收的光子个数,满足脉冲星角位置强度关联测量的要求。
左富昌 , 梅志武 , 邓楼楼 , 周昊 , 贝晓敏 , 黎月明 . 脉冲星角位置强度关联测量聚焦光学系统[J]. 航空学报, 2023 , 44(3) : 527124 -527124 . DOI: 10.7527/S1000-6893.2022.27124
Pulsar navigation provides a possible approach for deep space exploration and navigation in the future. To establish high-precision space-time datum system and improve pulsar navigation accuracy, the X-ray intensity correlation method can be adopted to realize high-precision measurement of the pulsar angular position. As the critical component of pulsar measurement and exploration instruments, the X-ray optics concentrates the weak X-ray signal from the pulsar through high-efficiency and high-resolution focusing, thus increasing the sensitivity of the instrument. Firstly, according to the ground experiment requirements of intensity-correlated measurement of pulsar angular position, the optical design of the multi-layer nested X-ray focusing optics was carried out. The effects of design parameters on the effective area and angular resolution were obtained, and the geometric parameters and reflection surface material of the mirrors were determined. Secondly, the overall manufacturing error standard for the focusing optics was determined, and the high-, low- and mid-frequency errors were allocated. Subsequently, ultra-smooth mandrels and mirrors were fabricated with the electroforming nickel replication process. The roughness and figure error of mandrels were tested, and the reflectivity of mirrors was measured with Beijing Synchrotron Radiation Facility. Finally, an in-situ alignment setup was built to precisely assemble and align the multi-layer nested mirrors to increase the effective area. The angular resolution of the focusing optics was measured to be 12.16". The intensity-correlated measurement experiment shows that the focusing optics significantly increases the number of photons received by the detector, thus satisfying the requirements for intensity-correlated measurement of pulsar angular position.
1 | 杨善初, 喻虹, 陆荣华, 等. X射线强度关联干涉测量能谱展宽校正[J]. 光学学报, 2019, 39(10): 395-402. |
YANG S C, YU H, LU R H, et al. Energy spectrum broadening correction in X-ray interferometry via intensity correlation[J]. Acta Optica Sinica, 2019, 39(10): 395-402 (in Chinese). | |
2 | ZHANG A X, HE Y H, WU L A, et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 2018, 5(4): 374. |
3 | 韦震, 陆荣华, 喻虹, 等. 基于符合计数的极弱光强度关联干涉测量研究[J]. 光学学报, 2020, 40(1): 211-218. |
WEI Z, LU R H, YU H, et al. Research on intensity-correlated interferometry with ultra-weak light based on coincidence counting[J]. Acta Optica Sinica, 2020, 40(1): 211-218 (in Chinese). | |
4 | HAN S S, YU H, SHEN X, et al. A review of ghost imaging via sparsity constraints[J]. Applied Sciences, 2018, 8(8): 1379. |
5 | BROWN R H, TWISS R Q. Interferometry of the intensity fluctuations in light-I. Basic theory: The correlation between photons in coherent beams of radiation[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1957, 242(1230): 300-324. |
6 | HANBURY BROWN R, TWISS R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature, 1956, 178(4541): 1046-1048. |
7 | DENG Z L, GAO Z F, LI X D, et al. On the formation of PSR J1640+2224: A neutron star born massive? [J]. The Astrophysical Journal Letters, 2020, 892(1): 4. |
8 | DENG Z L, LI X D, GAO Z F, et al. Evolution of LMXBs under different magnetic braking prescriptions[J]. The Astrophysical Journal Letters, 2021, 909(2): 174. |
9 | WANG H, GAO Z F, JIA H Y, et al. Estimation of electrical conductivity and magnetization parameter of neutron star crusts and applied to the high-braking-index pulsar PSR J1640-4631[J]. Universe, 2020, 6(5): 63. |
10 | GAO Z F, SHAN H, WANG W, et al. Reinvestigation of the electron fraction and electron Fermi energy of neutron star[J]. Astronomische Nachrichten, 2017, 338(9-10): 1066-1072. |
11 | GAO Z F, WANG N, YUAN J P, et al. Evolution of superhigh magnetic fields of magnetars[J]. Astrophysics and Space Science, 2011, 333(2): 427-435. |
12 | YAN F Z, GAO Z F, YANG W S, et al. Explaining high braking indices of magnetars SGR 0501+4516 and 1E 2259+586 using the double magnetic-dipole model[J]. Astronomische Nachrichten, 2021, 342(1-2): 249-254. |
13 | 韩春杨, 徐振邦, 吴清文, 等. 大型光学载荷次镜调整机构优化设计及误差分配[J]. 光学 精密工程, 2016, 24(5): 1093-1103. |
HAN C Y, XU Z B, WU Q W, et al. Optimization design and error distribution for secondary mirror adjusting mechanism of large optical payload[J]. Optics and Precision Engineering, 2016, 24(5): 1093-1103 (in Chinese). | |
14 | THOME K, GUBBELS T, BARNES R. Preliminary error budget for the reflected solar instrument for the Climate Absolute Radiance and Refractivity Observatory[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 8153, Earth Observing Systems XVI, 2011: 281-289. |
15 | GORENSTEIN P. Focusing X-ray optics for astronomy[J]. X-Ray Optics and Instrumentation, 2010, 2010: 109740. |
16 | 李海亮, 史丽娜, 牛洁斌, 等. 大高宽比硬X射线波带片制作及聚焦测试[J]. 光学 精密工程, 2017, 25(11): 2803-2809. |
LI H L, SHI L N, NIU J B, et al. Fabrication and focusing test of hard X-ray zone plates with high aspect ratio[J]. Optics and Precision Engineering, 2017, 25(11): 2803-2809 (in Chinese). | |
17 | GIACCONI R. History of X-ray telescopes and astronomy[J]. Experimental Astronomy, 2009, 25(1-3): 143-156. |
18 | AWAKI H, OGASAKA Y, KUNIEDA H, et al. Current status of the Astro-H X-ray Telescope system[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 7437, Optics for EUV, X-Ray, and Gamma-Ray Astronomy IV, 2009: 28-35. |
19 | FRIEDRICH P, BR?UNINGER H, BUDAU B,et al. Development and testing of the eROSITA mirror modules[C]∥ SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 2012: 508-515. |
20 | BAUMGARTNER W H, RAMSEY B, THOMAS N, et al. Ground calibration of the IXPE optics and telescope[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11821, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 2021: 118210N. |
21 | 赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016: 43-92. |
ZHAO D C. Design and fabrication technology on soft X-ray grazing incidence concentrators[D]. Changchun: Institute of Physics, Chinese Academy of Sciences, 2016: 43-92 (in Chinese). | |
22 | SHEN Z X, YU J, MA B, et al. Current progress of X-ray multilayer telescope optics based on thermally slumping glass for eXTP mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 269-280. |
23 | 强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报, 2019, 68(16): 158-163. |
QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica, 2019, 68(16): 158-163 (in Chinese). | |
24 | 孔繁星. 超精密芯轴制造及Wolter-Ⅰ型极紫外光学收集镜复制工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 50-88. |
KONG F X. Replication process research on ultra-precision mandrel manufacturing wolter-Ⅰ extreme ultraviolet collector optics[D]. Harbin: Harbin Institute of Technology, 2018: 50-88 (in Chinese). | |
25 | ZUO F C, MEI Z W, MA T, et al. Design and development of grazing incidence X-ray mirrors[C]∥ Proc SPIE 9796, Selected Papers of the Photoelectronic Technology Committee Conferences Held November, 2015: 442-447. |
26 | 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 030702. |
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 030702 (in Chinese). | |
27 | WEISSKOPF M C. Design of grazing-incidence X-ray telescopes. 1[J]. Applied Optics, 1973, 12(7): 1436-1439. |
28 | VERNANI D. advanced manufacturing techniques for X-ray and VHE Gamma-ray astronomical mirrors[D]. Varese: University of Insubria, 2011: 30-68. |
29 | ZUO F C, LI L S, MEI Z W, et al. Precision polishing of the mandrel for X-ray grazing incidence mirrors[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(1-2): 43-53. |
/
〈 |
|
〉 |