流体力学与飞行力学

火箭高温高速喷流注水降噪数值计算与分析

  • 刘俊林 ,
  • 徐希海 ,
  • 张志成 ,
  • 陈小前
展开
  • 1.国防科技大学 空天科学学院,长沙  410073
    2.北京特种工程设计研究院,北京  100028
    3.北京航空航天大学 航空发动机研究院,北京  100191
.E-mail: xuxihai@buaa.edu.cn

收稿日期: 2022-03-08

  修回日期: 2022-03-21

  录用日期: 2022-05-12

  网络出版日期: 2022-05-19

基金资助

国家级项目(ZRHT2020T05);国家自然科学基金(91952302);国家科技重大专项(J2019-II-0006-0026)

Simulation and analysis of noise reduction in high⁃temperature and high⁃speed rocket jet by water injection

  • Junlin LIU ,
  • Xihai XU ,
  • Zhicheng ZHANG ,
  • Xiaoqian CHEN
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha  410073,China
    2.Beijing Special Engineering Design and Research Institute,Beijing  100028,China
    3.Research Institute of Aero?Engine,Beihang University,Beijing  100191,China

Received date: 2022-03-08

  Revised date: 2022-03-21

  Accepted date: 2022-05-12

  Online published: 2022-05-19

Supported by

National Level Project(ZRHT2020T05);National Natural Science Foundation of China(91952302);National Science and Technology Major Project(J2019-II-0006-0026)

摘要

以某火箭发动机缩比喷管为研究对象,针对火箭发射的典型工况,基于计算流体力学(CFD)及Mixture多相流模型分别开展了孤立火箭喷流与注水降噪条件下的平均流场数值计算。分析了注水条件下,水流对火箭喷流平均温度、压力、速度和湍动能场的影响,并在此基础上采用自主发展的基于RANS(Reynolds Averaged Navier-Stokes)的喷流噪声预测程序,在分析火箭高温燃气喷流湍流混合噪声、宽带激波噪声频谱特性和指向性的基础上,研究了注水对火箭燃气喷流湍流混合噪声与宽带激波噪声在不同频率、不同观测位置的影响规律,为后续火箭起飞降噪方案的设计提供了技术基础。

本文引用格式

刘俊林 , 徐希海 , 张志成 , 陈小前 . 火箭高温高速喷流注水降噪数值计算与分析[J]. 航空学报, 2023 , 44(7) : 127122 -127122 . DOI: 10.7527/S1000-6893.2022.27122

Abstract

Based on Computational Fluid Dynamics (CFD) and the Mixture multiphase flow model, this study conducts numerical calculation of the average flow field under the conditions of an isolated rocket jet and water injection noise reduction. The influence of water flow on the average temperature, pressure, velocity and turbulent kinetic energy field of the rocket jet under the condition of water injection is analyzed. Reynolds Averaged Navier-Stokes(RANS) based jet noise prediction method is used to predict the spectrum and directivity of turbulent mixing noise and broadband shock noise from the jet with and without water injection. The effect of water injection on the turbulent mixing noise and broadband shock noise of the rocket gas jet at different frequencies and different observation positions is studied, providing a technical basis for the subsequent design of the rocket take-off noise reduction scheme.

参考文献

1 KURBJUN M C. Limited investigation of noise suppression by injection of water into exhaust of afterburning jet engine: NACA RM L57L05[R]. Washington, D.C.: NACA, 1958.
2 MARGETTS M J, GEERY E L, GREENWOOD R H. Water injection for rapid cooling of a flow of rocket exhaust gases[C]∥ 5th Propulsion Joint Specialist. Reston: AIAA, 1969.
3 EDQUIST C. Prediction of the launch pulse for gas generator launched missiles[C]∥ 24th Joint Propulsion Conference. Reston: AIAA, 1988.
4 GéLY D, ELIAS G, BRESSON C, et al. Reduction of supersonic jet noise-Application to the Ariane 5 launch vehicle[C]∥ 6th Aeroacoustics Conference and Exhibit. Reston: AIAA, 2000.
5 GéLY D, ELIAS G, BRESSON C. Aeroacoustic Studies and tests performed to optimize the acoustic environment of the Ariane 5 launch vehicle: TP No. 2001-172[C]. Paris: ONERA, 2001.
6 ALFONSI P. The vibration response of an orbiting geophysical observatory spacecraft full-scale structural model to a simulated launch acoustic environment: NASA X-320-66-353[R]. Washington, D.C.: NASA, 1966.
7 VU B, KANDULA M. An overview of research activity at the launch systems testbed: KSC-2003-045[R]. Washington, D.C.: NASA, 2003.
8 KANDULA M. Prediction of turbulent jet mixing noise reduction by water injection[J]. AIAA Journal200846(11): 2714-2722.
9 JONES H J, RAJORA V, MENON S K. Investigation of water jet break up by supersonic rocket exhaust[C]∥ 2018 International Energy Conversion Engineering Conference. Reston: AIAA, 2018.
10 ALLGOOD D, SAUNDERS G, LANGFORD L. Reduction of altitude diffuser jet noise using water injection[C]∥ 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
11 LU C Y, ZHOU Z T, SHI Y, et al. Numerical simulations of water spray on launch pad during rocket launching[J]. Journal of Spacecraft and Rockets202058(2): 566-574.
12 陈劲松, 曾玲芳, 平仕良, 等. 大型火箭发射喷水降噪技术研究进展[J]. 导弹与航天运载技术2019(2): 94-100.
  CHEN J S, ZENG L F, PING S L, et al. Advances of water suppression technology for large rocket launching noise[J]. Missiles and Space Vehicles2019(2): 94-100 (in Chinese).
13 LIGHTHILL M J. On sound generated aerodynamically. I. General theory[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences1952211(1107): 564-587.
14 LIGHTHILL M J. On sound generated aerodynamically. II. Turbulence as a source of sound[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences1954222(1148): 1-32.
15 PROUDMAN I. The generation of noise by isotropic turbulence[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences1952214(1116): 119-132.
16 PHILLIPS O M. On the generation of sound by supersonic turbulent shear layers[J]. Journal of Fluid Mechanics19609(1): 1-28.
17 WILLIAMS J E. The noise from turbulence connected at high speed[J]. Philosophical Transactions of the Royal Society A1963255(1061): 469-503.
18 POWELL A. Mechanism of aerodynamic sound production: AGARD Report 466[R]. Paris: AGARD, 1963.
19 LILLEY G M. On the noise from jets[C]∥AGARD Fluid Conference, 1974.
20 WILLIAMS J E F. Hydrodynamic noise[J]. Annual Review of Fluid Mechanics19691: 197-222.
21 GOLDSTEIN M E. Aeroacoustics of turbulent shear flows[J]. Annual Review of Fluid Mechanics198416: 263-285.
22 LILLEY G M. Jet noise classical theory and experiments[M]∥ HUBBARD H H. Aeroacoustics of flight vehicles: Theory and practice, Vol.1. Washington, D.C.: NASA, 1991: 211-289.
23 TAM C K W. Computational aeroacoustics-Issues and methods[J]. AIAA Journal199533(10): 1788-1796.
24 LI X D, GAO J H. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones[J]. Physics of Fluids200517(8): 085105.
25 LI X D, GAO J H. Numerical simulation of the three-dimensional screech phenomenon from a circular jet[J]. Physics of Fluids200820(3): 035101.
26 GAO J H, LI X D. Large eddy simulation of supersonic jet noise from a circular nozzle[J]. International Journal of Aeroacoustics201110(4): 465-474.
27 GAO J H, XU X, LI X D. Numerical simulation of supersonic twin-jet noise with high-order finite difference scheme[J]. AIAA Journal201856(1): 290-300.
28 BALSA T F, GLIEBE P R, KANTOLA R, et al. High velocity jet noise source location and reduction. Task 2. Theoretical developments and basic experiments: R78AEG323, FAA-RD-76-79-2[R]. 1978.
29 KHAVARAN A. Influence of mean-density gradient on small-scale turbulence noise[C]∥ 6th Aeroacoustics Conference and Exhibit. Reston: AIAA, 2000.
30 CROW S C, CHAMPAGNE F H. Orderly structure in jet turbulence[J]. Journal of Fluid Mechanics197148(3): 547-591.
31 BROWN G L, ROSHKO A. On density effects and large structure in turbulent mixing layers[J]. Journal of Fluid Mechanics197464(4): 775-816.
32 TAM C K W, CHEN P. Turbulent mixing noise from supersonic jets[J]. AIAA Journal199432(9): 1774-1780.
33 TAM C W. Supersonic jet noise[J]. Annual Review of Fluid Mechanics199527: 17-43.
34 TAM C K W, AURIAULT L. Jet mixing noise from fine-scale turbulence[J]. AIAA Journal199937(2): 145-153.
35 OBRIST D. Directivity of acoustic emissions from wave packets to the far field[J]. Journal of Fluid Mechanics2009640: 165-186.
36 CAVALIERI A V G, JORDAN P, COLONIUS T, et al. Axisymmetric superdirectivity in subsonic jets[J]. Journal of Fluid Mechanics2012704: 388-420.
37 REBA R, NARAYANAN S, COLONIUS T. Wave-packet models for large-scale mixing noise[J]. International Journal of Aeroacoustics20109(4-5): 533-557.
38 JORDAN P, COLONIUS T. Wave packets and turbulent jet noise[J]. Annual Review of Fluid Mechanics201345: 173-195.
39 XU X H, LI X D. Anisotropic source modelling for turbulent jet noise prediction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences2019377(2159): 20190075.
40 TAM C K W, AURIAULT L. Mean flow refraction effects on sound radiated from localized sources in a jet[J]. Journal of Fluid Mechanics1998370: 149-174.
41 徐希海, 李晓东. 远场假设对喷流噪声预测中格林函数求解的影响[J]. 航空学报201637(9): 2699-2710.
  XU X H, LI X D. Effect of farfield assumption on calculation of Green’s function for predicting jet noise [J]. Acta Aeronautica et Astronautica Sinica201637 (9): 2699-2710 (in Chinese).
42 MILLER S A E. Toward a comprehensive model of jet noise using an acoustic analogy[J]. AIAA Journal201452(10): 2143-2164.
43 NORUM T, BROWN M. Simulated high speed flight effects on supersonic jet noise[C]∥ 15th Aeroacoustics Conference. Reston: AIAA, 1993.
44 高军辉. 超音喷流啸音产生机制的数值模拟研究[D]. 北京: 北京航空航天大学, 2007.
  GAO J H. A numerical study on the generation mechanism of supersonic jet screech tones[D]. Beijing: Beihang University, 2007 (in Chinese).
45 于邵祯. 火箭发动机尾焰注水降温数值计算与试验研究[D]. 北京: 北京理工大学, 2015.
  YU S Z. Simulation and experiment research on temperature reduction of rocket engine jet by water injection[D]. Beijing: Beijing Institute of Technology, 2015 (in Chinese).
文章导航

/